CITY OF EAST CHICAGO Anthony Copeland, Mayor

East Chicago Sanitary District
Dr. Abderrahman Zehraoui, Director

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

July 28, 2020

Natalie Maupin
Indiana Department of Environmental Management
Office of Water Quality-Mail Code 65-42
Compliance Evaluation Section-Pretreatment Group
100 North Senate
Indianapolis, IN 46204-2251

RE: East Chicago Sanitary District Quarterly Compliance Pretreatment Report 2nd Quarter Report of 2020

To Natalie Maupin:

In accordance with Part III A (1) of the NPDES Permit No. 0022829, the East Chicago Sanitary District Pretreatment Staff has prepared and enclosed the Quarterly Report for the 2nd Quarter of 2020. Should you have any questions, please contact me at (219) 391-8466.

Sincerely,

CC: Newton Ellens, USEPA

Abderrahman Zehraoui, Ph.D., Director of Utilities, ECSD

Nickie Geros, Pretreatment Coordinator, ECSD

Encls.

EAST CHICAGO SANITARY DISTRICT EAST CHICAGO, INDIANA

2nd QUARTER

INDUSTRIAL COMPLIANCE STATUS REPORT

2020

July 28, 2020

The District has a total of 22 permitted Industrial Users (IUs), eight which are categorized as Significant Industrial Users (SIUs). The eight SIU permittees consist of five Categorical Industrial Users (CIUs) [Outfall #312 ó Electric Coatings, Outfall #415 - TAC East Inc., Outfall #514 ó National Processing Corporation, Outfall #521 - Lakeshore Railcar Services, and Outfall #901 óSafety Kleen] and three other IUs [Outfall #401 ó W. R. Grace, Outfall #936 ó US Steel Corporation, and Outfall #951 US Gypsum]. Two of the permitted IUs have suspended their operations. The discharge permit for Outfall #415 ó TAC East, Inc. has been suspended due to a fire at the facility in August 2019 and operations have been suspended ever since. Outfall #936 ó US Steel has also ceased operations is currently not discharging any wastewater under their permit from their facility.

Except for the permitted IUs involving groundwater remediation projects (Outfalls 112, 124 and 411), each of the permitted IUs are sampled on monthly basis, as a minimum. This compliance report covers the period from April 1, 2020 to June 30, 2020.

The permitted industrial users (IUs) were sampled by the District during this quarter on the dates listed below.

Outfall	Company	2 nd Quarter Sample Dates
112	GATX	No sampling, no discharges
124	Buckeye Pipeline	No sampling, no discharges
312	Electric Coatings	4/8, 5/20, 5/21 and 6/23
401	WR Grace	4/20, 5/4 and 6/1
411	USS Lead Site	Self-monitoring on 4/23
415	TAC East	No Sampling. Discharge permit has been suspended as there
		was a fire at the facility on 8/24/19 and operations have
		temporarily ceased.
511	Green Lake Tube	4/6, 5/13 and 6/24
514	National Processing	4/6, 5/13 and 6/24
518	ICO Polymers	4/2, 5/5 and 6/22
521	Lakeshore Railcar	4/14, 4/29, 5/12, 5/28, and 6/30
531	Praxair, Inc.	4/15, 5/7 and 6/8
	Production	
541	Praxair, Inc. Rare	4/15, 5/7 and 6/8
	Gases	
611	Arcelor Mittal-	4/22, 5/26 and 6/22
	Research	
804	Arcelor Mittal East	4/21 and 6/3
805	Arcelor Mittal East	4/21, 5/18 and 6/3
901	Safety-Kleen	4/13, 4/28, 5/6, 5/21, 6/11 and 6/29
931	Arcelor Mittal West	4/16, 5/11 and 6/9
934	Arcelor Mittal West	4/16, 5/27 and 6/9
935	Arcelor Mittal West	4/22, 5/27 and 6/25
936	US Steel	No sampling, US Steel suspended operations at this facility
941	Praxair, Inc. HyCO	4/7, 5/19, 6/2 and 6/23
951	US Gypsum	4/28, 5/19 and 6/11

No compliance monitoring was completed at #112 GATX, #124 Buckeye Pipeline, #415 TAC East and #936 US Steel as there were no discharges from these facilities. GATX #112 consists of a groundwater remediation system for treating impacted petroleum groundwater. Buckeye Pipeline #124 which maintains a discharge permit for several dewatering wells associated with a groundwater remediation project was not sampled during this period as there were

no discharges. The #415 TAC East facility has ceased operations since a fire occurred at their facility on August 24, 2019 and operations have not resumed. US Steel #936 ceased operations at their facility, has no discharges and thus no sampling was completed.

During the 2nd quarter of 2020, two Industrial Users (CIUs) experienced a total of 20 violations with the following parameters and are summarized as follows:

	East Chicago Compliance Report Date Range	Status F	Report	
Varnu ▼	Variable	Violation -	Limit Description	▼ Limit ▼
62161	521 FOG {mg/L}	1	Daily Maximum Limit	>36
62421	521 Total Copper (Cu) {mg/L}	3	Daily Maximum Limit	>0.5
62481	521 Total Chromium(Cr) {mg/L}	3	Daily Maximum Limit	>0.746
62511	521 Total Arsenic (As) {mg/L}	3	Daily Maximum Limit	>0.162
62611	521 Bis (2-ethylhexyl) phthalate {mg/L}	1	Daily Maximum Limit	>0.215
70191	901 Amen. Cyanide {mg/L}	6	Daily Maximum Limit	>0.019
70461	901 Total Mercury (Hg) {mg/L}	3	Daily Maximum Limit	>0.00029
	Total	20		

Lakeshore Railcar & Tanker Services, Outfall #521, exceeded the categorical limits for bis (2-ethylhexyl) phthalate and chromium on April 14, arsenic, copper and chromium on April 29 and May 12, and arsenic copper and oil & grease on May 28. NOVs for each exceedance, including fines totaling \$11,000, were issued to Lakeshore Railcar & Tanker Services.

Safety-Kleen Systems, Outfall # 901, a CIU categorized as a CWT under 40 CFR 437.25 ó exceeded the available cyanide local limit on six occasions and mercury limit on three occasions. NOV letters for each occurrence were sent on April 27, May 13, June 1, and July 14. Each exceedance was assessed a fine of \$2,500, totaling \$22,500. Safety-Kleen continues to withhold any fines related to cyanide violations pending resolution of their appeal of the cyanide discharge permit limits.

No other violations were noted during the 2^{nd} quarter of 2020 pretreatment monitoring by the District or IU self-monitoring reports.

A Quarterly Summary Report for each IU summarizing the analytical results of sampling completed April 1 through June 30, 2020 is included as an attachment to this letter. These summaries provide the dates and analytical results of the pretreatment monitoring for each facility. Analytical results that exceed the local or categorical limit are highlighted. Copies of the NOV letters issued to the violating IUs are also attached.

Monthly Pretreatment Monitoring Report Summaries

East Chicago Sanitary District: Waste Water Division
Pretreatment Monitoring Report

Apr 01, 2020 to Jun 30, 2020

	Industry Name:	G-17X			
	Field pH	Arsenic	Cadmium	Copper	Control
Sample #1 Date, Result Sample #2 Date, Result					
Sample #3 Date, Result Minimum					
Maximum					
Average					
	Molybdenum	Nickel	Silver	Thallium	Zinc
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result		100			
Minimum					
Maximum					
	Bis(2-ethylhexyl)phthalate	Fluoranthene	Fluoride	Mercury	Ammonia
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					
	Phosphorus	Phenois	Chromium	Available Cvanide	Oil & Grease
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					
	Residual Chlorine	Biochemical Oxygen Demand	Chemical Oxygen Demand	SQL	881
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					
	Sulfate				
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					

Maximum Average

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:				CATA	
Daily Max Limits					BO
Parameter	Units	Daily Max Limit	Violations	TRC Exceedances	
Arsenic	mg/L	1.31	0	0	L
Cadmium	mg/L	!	0	0	
Copper	mg/L	0.88	0	0	
read	mg/L	2.28	0	0	
Molybdenum	mg/L	2.8	0	0	
Nickel	mg/L	08.0	0	0	
Silver	mg/L		0	0	
Thallium	mg/L		0	0	
Zinc	mg/L	5.5	0	0	
Bis(2-ethylhexyl)phthalate	₩ W	1.03	0	0	
Fluoranthene	mg/L		0	0	
Fluoride	mg/L	30	0	0	
Mercury	L/Gm	0.0002	0	0	
Ammonia	mg/L	134	0	0	
Phosphorus	mg/L	31	0	0	
Phenols	mg/L	0.96	0	0	
Chromium	mg/L	7.0	0	0	
Available Cyanide	mg/L	0.019	0	0	
Oil & Grease	mg/L	117	0	0	
Residual Chlorine	mg/L		0	0	

Other Limits

	_
Violations	0
Daily Maximum	10
Daily Minimum	22
Units	ns
Parameter	Field pH

*Site Specific Land

**If not specified, the unit is in mg/L

of Wolations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division

Apr 01, 2020 to Jun 30, 2020

Pretreatment Monitoring Report

Oil & Grease Ammonia Lead Zinc TSS Available Cyanide Thallium Mercury Copper SQT Chemical Oxygen Demand Chromium Fluoride Cadmium Silver Buckeye Terminals, LLC Biochemical Oxygen Demand Fluoranthene Phenois Arsenic Nickel Bis(2-ethylhexyl)phthalate Residual Chlorine Molybdenum Phosphorus Field pii Sulfate Industry Name: Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #3 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #3 Date, Result Minimum Maximum Minimum Minimum Maximum Minimum Maximum Minimum Maximum Maximum Average Average Minimum Average Average Average Average

Daily Maximum 은

Daily Minimum

Units าร

Orner Limits Parameter Field pH

Pretreatment Monitoring Report

Buckeye Terminals, LLC

Industry Name:

Daily Max Limits

Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	o	0
Cadmium	mg/L		0	0
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	0.80	0	0
Silver	mg/L		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	mg/L	9	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenols	mg/L	96.0	0	0
Chromium	mg/L	7.0	0	0
Available Cyanide	mg/L	0.019	0	0
Oil & Grease	mg/L	117	0	0
Residual Chlorine	mg/L		0	0

*Site Specific Limit

**If not specified, the unit is in mg/l.

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Sample #1 Date, Result 04/6 Sample #2 Date, Result 05/2 Minimum Maximum Average Sample #1 Date, Result 05/2 Sample #3 Date, Result 05/2 Sample #3 Date, Result 05/2 Sample #4 Date, Result 05/2	Field pH 04/08/20 05/20/20	- 0	Ars	rsenic	Cadmium	811		Copper	-	Lead
	1/08/20	0.0		-						
	5720/20	2.0	04/08/20	0.0015	05/20/20	0.0001	04/08/20	0.0173	04/08/20	0.0002
	100000000000000000000000000000000000000	0.7	05/20/20	0.0053	05/21/20	0.0010	05/20/20	0.0443	05/20/20	0.0002
	05/21/20	7.8	06/23/20	0.0068	06/23/20	0.0002	05/21/20	0.0050	05/21/20	0.0025
		7.0		0.0015		0.0001		0.0050		0.0002
		8.3		0.0068		0.0010		0.0443		0.0025
		7.7		0.0046		0.0004		0.0222		0.0010
	Molybdenum	en en	Š	Nickel	Silver			Thalling	İ	
	04/08/20	0.0361	04/08/20	0.0071	04/08/20	0.0001	04/08/20	0.0074	00/108/200	ZINC
	05/20/20	0.0308	05/20/20	0.0046	02/20/20	0000	02/02/20	0.0046	04/00/20	0.0033
	05/21/20	0.0280	05/21/20	0.0050	05/21/20	0.0025	05/04/20	0.000	03/20/20	0.0415
		0.0280		0.0046		0.0001	0212 1120	0.0030	02/12/60	0.1000
		0.0361	i H	0.0070		2000		0.0046		0.0415
		0.0316		0.0055		0.0009		0.0055		0.1000
+										
+	Bis(2-ethylnexyl)phthalate	phthalate	Fluora	Fluoranthene	Fluoride			Mercury	Ammonia	onia
_	04/08/20	0.0500			04/08/20	0.5000	04/08/20	0.0001	04/08/20	0.6400
	05/20/20	0.0500			05/20/20	0.1000	05/20/20	0.0001	05/20/20	0.3600
Result	05/21/20	0.0077			05/21/20	0.1600	05/21/20	0.0002	05/21/20	0.7200
Minimum		0.0077				0.1000		0.0001		0.3600
Maximum		0.0500				0.5000		0.0002		0.7200
Average		0.0359				0.2533		0.0001		0.5733
										2000
L	Phosphorus	us.	Phe	Phenois	Chromium	ium	Avails	Available Cvanide	Oil&	Oil & Grease
	04/08/20	0.1000	04/08/20	0.0300	04/08/20	0.0000	04/08/20	0.0020	04/08/20	5 0000
	05/20/20	0.0500	05/20/20	0.0300	05/20/20	0.0000	05/20/20	0.0020	05/20/20	2000
Sample #3 Date, Result 05/7	05/21/20	0.1000	05/21/20	0.0050	05/21/20	0.0050	06/23/20	0.0021	05/21/20	2,0000
Minimum		0.0500		0.0050		0.0000		0.0020		2,2,000
Maximum		0.1000		0.0300		0.0050		0.0021		5 2000
Average		0.0833		0.0217		0.0017		0.0020		5 0667
	Total Toxic Organics	ganics	등	loroform	Naphthalene	alene	Methy	Methylene Chloride	Biochemical O	Biochemical Oxygen Demand
	05/20/20		05/20/20	0:0020	05/21/20	0.0008	05/21/20	0.0050	05/20/20	10.0000
	05/21/20		05/21/20	0.0020						
Result	06/23/20		06/23/20	0.0050						
Minimum				0.0020		0.0008		0.0050		10.0000
Maximum				0.0050		0.0008		0.0050		10.0000
Average				0.0040		0.0008		0.0050		10.0000
	Chloride	0	Chemical Ox	Oxvoen Demand	SQT			Tee		
Sample #1 Date. Result 05/2	05/20/20	435 0000		50 6000			04100100	-		Sulfate
-	-		05/20/20	41 3000			04/00/20	3.00	05/20/20	6,400.000
Sample #3 Date Recult			06/23/20	75 4000			02/02/c0	2.00		
Minimum		435 0000	00123120	25.4000			06/23/20	2.00		
Maximum		435 0000		50.4000				2.00		6,400.000
Average		435 0000		29.0000				3.00		6,400.000
				74: 1000				2.33		6.400.000

Average

0 0 0 0 0

> 0.0222 0.0055 0.0009 0.0683 0.0010

0.0017

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Daily Maximum Monthly Average Limit Daily Minimum 2.38 0.24 1.71 2.07 Units Units mg/L ₩J/Gi ⊒% mg/L mg/L mg/L mg/L Monthly Average Limits mg/L В Parameter Parameter Other Limits Chromium* Cadmium* Field pH Copper* Nickel* Silver* Lead* Zinc* Electric Conting Technologies TRC Exceedances 0 0 0 0 o 0 Violations 0 0 0 0 O 0 o o 0 0 0 0 0 0 Daily Max Limit 0.0002 0.019 0.88 69'0 0.80 0,43 2.61 2.8 1.03 NF 30 34 Ħ 2 mg/L Bis(2-ethylhexyl)phthalate Industry Name: Available Cyanide Molybdenum Fluoranthene Phosphorus Parameter Mercury Chromium* Cadmium* Arsenic Phenois Copper* Thallium Ammonia Nickel* Fluoride Silver* Lead* Zinc* Dairy Max Limits

Violations

Site Specific Limit

Total Toxic Organics*

Residual Chlorine

Oil & Grease

Total Toxic Organics equals sum of chloroform, naphthalene and methylene chloride concentrations

0

117

"If not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. f the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report Industry Name:

	Field	Field pH	An	Arsenic	Cadmium	ium		Copper	Fe	Lead
Sample #1 Date, Result	04/20/20	8.0	04/20/20	0.0034	05/04/20	0.0047	04/20/20	0.0265	04/20/20	0.0070
Sample #2 Date, Result	05/04/20	7.6	05/04/20	0.0133			85704720	0.0108	05/04/20	0.0027
Sample #3 Date, Result	06/01/20	7.4	06/01/20	0.0173			06/01/20	0.0131	06/01/20	0 0029
Minimum		7.4		0.0034	de la	0.0047		0.0108		0.0027
Maximum		8.0		0.0173		0.0047		0.0265		02000
Average		7.7		0.0113		0.0047		0.0168		0.0042
	Molyh	Molyhdanim		Nickel						
Semala 44 Date Daniel	04/00/00	00000	1	- 1	Alle			Lualitum		Zinc
Sample #1 Date, Result	04/20/20	0.02160	04/20/20	0.01100					04/20/20	0.0672
Sample #2 Date, Result	05/04/20	0.00471	05/04/20	0.00427					05/04/20	1.3200
Sample #3 Date, Result	05/01/20	0.00476	06/01/20	0.00455					06/01/20	1.2600
Minimum		0.0047		0.0043						0.0672
Maximum		0.0218		0.0110						1.3200
Average		0.0104		0.0066						0.8824
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluor	Fluoranthene	Fluoride	ide		Mercury	Ammonia	i do
Sample #1 Date, Result	04/20/20	0.1000			04/20/20	0.5000	04/20/20	0.0001	04/20/20	0.9620
Sample #2 Date, Result	05/04/20	0.0200			05/04/20	1.2000	05/04/20	0.0001	05/04/20	3.0600
Sample #3 Date, Result	06/01/20	0.0200			06/01/20	1.0000	06/01/20	0.0001	06/01/20	2.3300
Minimum		0.0200				0.5000		0.0001		0.9620
Maximum		0.1000				1.2000		0.0001		3 0600
Average		0.0467				0.9000		0.0001		2.1173
	40	9, 110	i							
: : : : : : : : : : : : : : : : : : : :	Sour	Finospinorus	- 1	Fnenois	Chromium		Avail	Available Cyanide	Oile	Oil & Grease
Sample #1 Date, Result	04/20/20	1.0300	04/20/20	0.0500	04/20/20	0.0100	04/20/20	0.0020	04/20/20	5.0000
Sample #2 Date, Result	05/04/20	0.4190	05/04/20	0.0250	05/04/20	0.0000	05/04/20	0.0020	05/04/20	5.0000
Sample #3 Date, Result	06/01/20	0.2500	06/01/20	0.0250	06/01/20	0.0000	06/01/20	0:0030	06/01/20	5.0000
Minimum		0.2500		0.0250		0.0000		0.0020		5.0000
Maximum		1.0300		0.0500		0.0100		0.0030		5.0000
Average		0.5663		0.0333		0.0033		0.0023		5.0000
	Residual	Residual Chlorine	Biochemical (Oxygen Demand	Chemical Oxygen Demand	ten Demand		TDS		186
Sample #1 Date, Result			05/04/20	13.0000	04/20/20	107.00			04/20/20	4 000 00
Sample #2 Date, Result					05/04/20	39.00			05/04/20	49.00
Sample #3 Date, Result					06/01/20	32.20			06/01/20	00 8
Minimum				13.0000		32,2000				8 00
Maximum				13.0000		107.0000				4 990 00
Avorago						Ī				

Cullate	180.000			180.000	180.000	180.000
000	05/04/20					
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average

Daily Maximum 은

Daily Minimum

Units S

Orner Limits Parameter Field pH

Industry Name: lax Limits
mg/L
₩ mg/l
mg/L

*Site Specific Limit

"If not specified, the unit is in mg/L

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

	Industry Name:			USS Lend						
	Field pH		AR	Arsenic	Cadmium	in.		Copper		i de
Sample #1 Date, Result			04/23/20	0.4700	04/23/20	0.0000	04/23/20	0.0017	04/03/30	D DOOR
Sample #2 Date, Result									03/52/40	0.0035
Sample #3 Date, Result										
Minimum				0.4700		0.0000	is a	0.0017		3000
Maximum				0.4700		0.0000		0.0017		0.0050
Average				0.4700		0.0000		0.0017		0.0035
	Molybdenum	E	Ž	Nickel	Silver	1		Thellium		
Sample #1 Date, Result			04/23/20	0.00470	04/23/20	0.0011	00/23/20	OCCOO O		ZINC
Sample #2 Date, Result							70740	0.00230	04/23/20	0.0320
Sample #3 Date, Result		-								
Minimum				0.0047		0.0044		0000		
Maximum				0.0047	-	0.00		0.0023		0.0320
Average				0.0047		0.0011		0.0023		0.0320
								0.0023		0.0320
	Bis(2-ethylhexyl)phthalate	hthalate	Fluor	Fluoranthene	Fluoride	ide		Mercury		
Sample #1 Date, Result	04/23/20 0.	0.0014	04/23/20	0.000	04/23/20	7,6000	04/23/20	0 0004	04/20/10	Allinollia
Sample #2 Date, Result		İ						0000	04123120	9.2000
Sample #3 Date, Result										
Minimum	0	0.0014		0.0000		7.6000		0000		0000
Maximum	O	0.0014		0.0000		7 6000		2000		9.2000
Average	0	0.0014		0.0000		7.6000		0.0001		9.2000
										9.2000
	osphor	Ø	Ph	Phenois	Chromium	ium	Ava	Available Cvanide	\$ IIO	Oil & Greace
Sample #1 Date, Result	04/23/20 0.	0.0800			04/23/20	0.0022	04/23/20	0.0050	04/23/20	1 5000
Sample #2 Date, Result						:				
Sample #3 Date, Result		-								
Minimum	0	0.080.0				0.0022		0.0050		4 5000
Maximum	Ö	0.080.0				0.0022		0.0050		7
Average	Ö	0.0800				0.0022		0.0050		1 5000
	Residual Chlorine	rine	Biochemical (Biochemical Oxygen Demand	Chemical Oxygen Demand	Jen Demand		TDS		TSS
Sample #1 Date, Result		+			04/23/20	19.00			04/23/20	30.00
Sample #2 Date, Result										
Sample #3 Date, Result						11				
MINIMIN						19.0000	ľ			30.00
Maximum						19.0000				30.00
Average						19.0000				30.00
	Sulfate									
Sample #1 Date, Result										
Sample #2 Date, Result										
Sample #3 Date, Result										
Minimum										
Maximum										
Average										

ı			
ı	١		
ı	ı		
ı	ı		
ı	I		
ı	ı		
ı	ı		
ı	Į		
н	ı		
ı	ı		
ı	ı		
П	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		
	ı		ŝ
	ı		ě
	ı		£
	ı	ŧ	ĉ
	ı	1	ì
	ı		ď
	ŀ	Ì	t
	ı	Ĺ	É
	ı	1	Š
	١	i	h
	ı		
	ı		

	S.	_	T	-T-	1					Т	1		T	1		<u> </u>			Т	Т	7
	TRC Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,
	Violations	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Daily Max Limit	1.31		0.88	2.28	2.8	0.80			5.5	1.03		30	0.0002	134	31	0.96	7.0	0.019	117	+
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/gm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Daily Max Limits	Parameter	Arsenic	Cadmium	Copper	Lead	Molybdenum	Nickel	Silver	Thallium	Zinc	Bis(2-ethylhexyl)phthalate	Fluoranthene	Fluoride	Mercury	Ammonia	Phosphorus	Phenols	Chromium	Available Cyanide	Oil & Grease	:

Omer Limits

Parameter	Units	Daily Minimum	Daily Maximum	Violations
i				
red bh	ns	ഹ	9	0

"Site Specific Limit

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

^{**}If not specified, the unit is in mg/L

istrict:	Waste	Water	Division
	1strict:	Istrict: Waste	East Chicago Sanitary District: Waste Water Divi

Sumple of Tobe, Nearth Field pH Antenhot Cardnum Capper Lobe, Nearth Field pH Antenhot Capper Lobe, Nearth Field pH Fie		Field of				
Molybdenum Mickel Silver Thailium			Arsenic	Cadmium	Conner	7.44
Molybdenum Nickel Silver Thailium Bisi 2-athyliczy)pithasta Filuorithene Filuorithene Filuorithene Filuorithene Phosphorus Phosphorus Phenolis Chemical Oxygen Demand TDS Sulfitte Schleine Sign-HEM Sulfitte Schleine	Sample #1 Date, Result				Jaddoo	Lead
Molyddenum Nickel Silver Theillun	sample #2 Date, Result					
Modylodenum Nicke Silver Thailium Fluoranthene Flu	ample #3 Date, Result					
Bis (2-ethylnexy) phthalate Fluoranthene Fluoranthene Fluoride Mercury Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chromium Chromium Available Cyanide Sulfate Soft-HEM	Minimum					
Macuy Bis(2-ethylhexy)phthalate Fluoranthene Maximum						
Motybdenum Mickel Silver Thailium	Average					
Bis (2-ethylhexyl)pirthalate Fluoranthene Fluoride Mercury Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Surfate Sign-HEM						
Bis(2-ethytheyt)phthatete Fluoranthene Fluoride Mercury Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SSOT-HEM	ample #1 Date. Result		NICKE	Silver	Thallium	Zinc
Bis(2-othylhexy)phthalate Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Mercury Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SiGT-HEM	ample #2 Date, Result					
Bis(2-ethylhexyl)phthalate Fluoranthene Fluoranthene Fluoride Mercury Phosphorus Phonois Chromlum Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate Soft-HEM	ample #3 Date, Result					
Bis(2-ethylhexyl)phthalate Fluoranthene Fluoride Mercury Phosphorus Phenolis Chromlum Avrillable Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Minimum					
Bie(Z-ethylhexyl)phthalate Fluoranthene Fluoranthene Fluoride Mercury Phosphorus Phenols Chromlum Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Maximum					
Bis(2-ethylhexyl)phthialate Fluoranthene Fluoride Mercury Phosphorus Phenois Chromlum Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Average					
Phosphorus Phenois Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM		Bis(2-ethylhexylluhthalate	Chromothono	Ē		
Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Blochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	ample #1 Date, Result			rigoriae	Mercury	Ammonia
Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEW	ample #2 Date, Result					
Phosphorus Phenois Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	ample #3 Date, Result					
Phosphorus Phenois Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Minimum					
Phosphorus Phenols Chromium Available Cyanide Residual Chlorine Blochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Maximum					
Phosphorus Phenois Chromium Available Cyanide Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Average					
Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM		Phoenhorie		-		
Residual Chlorine Blochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	ample #1 Date, Result		SIGNATURE	Caromina	Available Cyanide	Oil & Grease
Residual Chlorine Blochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	ample #2 Date, Result					
Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Imple #3 Date, Result					
Residual Chlorine Blochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Minimum					
Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Maximum					
Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Sulfate SGT-HEM	Average					
Sulfate SGT-HEM						
Sufate	ample #1 Date, Result			Chemical Oxygen Demand	TDS	TSS
Sulfate	ample #2 Date, Result					
Sulfate	ample #3 Date, Result					
Sulfate	Minimum					
Sulfate	Maximum					
Sulfate	Average					
		Sulfate	NOT TOS			
Average Annum	ample #1 Date, Result					
Minimum Maximum Average	ample #2 Date, Result					
Minimum Maximum Average	ample #3 Date, Result					
Maximum	Minimum					
Avvanan	Maximum					
	Average					

Industry Name:				LIC East, Inc.	
Dally Max Limits				The same of the sa	
Parameter	Units	Daily Max Limit Violations	Violations	TRC Evropolances	5 [
Arsenic	mg/L	1.31	0	0	
Cadmium	mg/L		0	0	
Copper*	mg/L	0.88	0	0	
Lead	mg/L	2.28	0	0	
Molybdenum	mg/L	2.8	0	0	

0.80

	um Violations	0	
	Daily Maximum	10	
	Daily Minimum	5	
	Units	ns	
Caner Limits	Parameter	Field pH	
	dances		

Site Specific Limit

**If not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

0

0

0.0002

3

7/6m mg/L mg/L mg/L mg/L

mg/l

Bis(2-ethylhexyl)phthalate

Zinc

Fluoranthene

Fluoride

2

31

Phosphorus

Phenols

Ammonia

Mercury*

1.03

mg/L

Thallium

Silver

Nickel

0 0

96.0

7.0

0.019

117

Residual Chlorine

SGT-HEM*

Available Cyanide Oil & Grease

Chromium

26

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

		Contraction of the Contraction o		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO PERSON NAMED	The same					
	Field	Field pH	Ars	Arsenic	Cadmium	llum		Copper		Dea
Sample #1 Date, Result	04/08/20	7.3	04/06/20	0.0058	06/24/20	0.0002	04/06/20	0.0019	04/06/20	9000
Sample #2 Date, Result	05/13/20	7.2	05/13/20	0.0054			05/13/20	0.0016	05/13/20	0.000
Sample #3 Date, Result	05/24/20	7.2	06/24/20	0.0053			06/24/20	0.0025	06/24/20	0.0038
Minimum	1	7.2		0.0053		0.0002		0.0016		0 0004
Maximum		7.3		0.0058		0.0002		0.0025		0.0038
Average		7.2		0.0055		0.0002		0.0020		0.0016
	MoWy	Mohhdenim	N N	Nickel	130					
Sample #1 Date Result	04/06/20	0.0032	DAMORISO	0 0054		5		- naillum		Zinc
Sample #2 Date Recult	05/13/20	0.0032	05/43/20	0.0034					04/06/20	0.0072
Sample #3 Date, Result	06/24/20	0.0038	06/24/20	0.0043					05/13/20	0.0046
Minimum		0.0032	07117100	0.0030					06/24/20	0.0199
Maximum		0.002		0.0048						0.0046
Average		0.0034		0.0030						0.0199
				2000.0						0.0106
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluora	Fluoranthene	Fluorida	ide		Moreilee		
Sample #1 Date, Result	04/06/20	0.0500			04/06/20	0.8000	04/06/20	0.0001	Ammonia	4 4400
Sample #2 Date, Result	05/13/20	0.0500			05/13/20	0 8000	05/13/20	0.000	04/09/20	1.4400
Sample #3 Date, Result	06/24/20	0.0500			DRIZAIO	0.8000	08/24/20	0.000	03/13/20	1.4900
Minimum		0.0500				0.000	021-200	0.000	USIZAZU	1.6000
Maximum		0.0500				00000		0.000		1.4400
Average		0.0500				0.0000		10000		1.6000
						0.000		0.0001		1.5100
	Phosp	Phosphorus	Phe	Phenois	Chromium	nium	Avail	Available Cvanide	3 110	Oil & Groseo
Sample #1 Date, Result	04/06/20	0.1100	04/06/20	0.0300	04/06/20	04/06/20	0,000	00000	04/06/20	2000
Sample #2 Date, Result	05/13/20	0.0600	05/13/20	0.0500	05/13/20	05/13/20	0.000	0.0020	04/00/20	2.0000
Sample #3 Date, Result	06/24/20	0.0800	06/24/20	0.0300	06/24/20	06/24/20	0.0003	0.0020	00113120	3,000
Minimum		0.0600		0.0300			0.0020	0.0021	US/24/20	000000
Maximum		0.1100		0.0500				0.0020		5.0000
Average		0.0833		0.0367				0.0020		5.0000
	Residual	Residual Chlorine	Biochemical C	Biochemical Oxygen Demand	Chemical Oxygen Demand	gen Demand		TDS	F	TSS
Sample #1 Date, Result			06/24/20	11.00	04/06/20	32.0000			04/06/20	8.00
Sample #2 Date, Result					05/13/20	34.5000			05/13/20	8.00
Sample #3 Date, Result					06/24/20	32.2000			06/24/20	9.00
Minimum				11.00		32.0000				00.8
Maximum				11.00		34.5000				00 6
Average				11.00		32.9000				9,00
										0.00
	Suh	Sulfate								
Sample #1 Date, Result	06/24/20	37.00								
Sample #2 Date, Result										

37.000 37.000 37.000

Sample #3 Date, Result
Minimum
Maximum

Average

Industry Name:

Green Lake Tube

Daily Max Limits

Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	0	0
Cadmium	∏/6ш		0	0
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	0.80	0	0
Silver	mg/L		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0

0000

0 0

0.0002

30

134

1.03

Bis(2-ethylhexyl)phthalate

Fluoranthene

Fluoride Mercury Ammonia 0 0

0.019

Available Cyanide

Chromium

Residual Chlorine

Oil & Grease

117

7.0

0 0

00000

0.96

쮼

Phosphorus

Phenols

Other Limits

Violations		0
Daily Maximum		10
Daily Minimum		no.
Units		ns.
Parameter	1 1 1 1	Held pH

*Site Specific Limit

^{**}If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Minimum Maximum Average Sample #1 Date, Result	LC DIST									
	The second second second second	- 1	- 1	Arsenic	Cadrillum	шп		Copper		Lead
	04/06/20	7.9	04/06/20	0.0150	06/24/20	0.0002	04/08/20	0.0312	04/06/20	0.0004
	05/13/20	7.4	05/13/20	0.0082			05/13/20	0.0218	05/13/20	10000
	06/24/20	7.1	06/24/20	0.0106		Att	06/24/20	0.0195	06/24/20	0.0004
		7.1		0.0082		0.0002		0.0195		20000
		7.9		0.0150		0 0000		0.0120		0.0004
L_ _		7.5		0.0113		0.0002		0.0312		60000
										0.0004
	Molybdenum	enum	Ž	ickel	Silver	10		Thallium		Zinc
	04/06/20	0.0142	04/06/20	0.0230					ONINGIO	0.0446
	05/13/20	0.0082	05/13/20	0.0157					05/13/20	0.0.0
Sample #3 Date, Result	06/24/20	0.0169	06/24/20	0.0252					02/10/20	0.0100
		0.0082		0.0157					UD/24/20	0.0092
Maximum	ì	0.0169		0.0252						0.0092
Average	Ĭ	0.0131		0.0232	ļ					0.0146
				2						0.0113
L	Bis(2-ethylhexyl)phthalate	yl)phthalate	Fluora	Fluoranthene	Fluoride	ide		Mercury	America	Ammonia
	04/06/20	0.0500			04/06/20	0.2000	04/06/20	0.0001	04/06/20	0400
Sample #2 Date, Result	05/13/20	0.1000			05/13/20	0.3000	05/43/20	0.000	07/07/10	0.1000
	06/24/20	0.1000			06/24/20	0.2000	06/24/20	0.000	05/13/20	0.1000
Minimum		0.0500				0.2000		00000		0.100
Maximum		0.1000				03000		0000		0.1000
Average		0.0833				0 2333		2000		0.1000
		1						0000		0.1000
	Phosphorus	orus		Phenols	Chromium	ium	Avai	Available Cvanide	Oil&	Oil & Grease
	04/06/20	0.9800	04/06/20	0.0300	04/06/20	0.0200	04/06/20	0.0020	04/06/20	2 0000
	05/13/20	0.8300	05/13/20	0.0400	05/13/20	0.0100	05/13/20	0.0020	05/13/20	5,000
Result	06/24/20	0.5500	06/24/20	0.3100	06/24/20	0.0100	06/24/20	0.0027	06/24/20	6.0000
Minimum		0.5500		0.0300		0.0100		0.0020		5 0000
Maximum		0.9800		0.3100		0.0200		0.0027		00000
Average		0.7867		0.1267		0.0133		0.0022		5.3333
L	3									
7	Residual Chiorine	niorine	<u> </u>	Oxygen Demand	Chemical Oxygen Demand	en Demand		TDS	ST .	TSS
Sample #1 Date, Result			06/24/20	89.00	04/06/20	209.00			04/06/20	47.00
Sample #2 Date, Result					05/13/20	201.00			05/13/20	47.00
Sample #3 Date, Result					06/24/20	219.00			06/24/20	37.00
Minimum				89.00		201.00				37.00
Maximum				89.00		219.00				47.00
Average				89.00		209.67				A2 67

Sample #1 Date, Result 06/24/20 24,000 Sample #2 Date, Result 24,000 Sample #3 Date, Result 24,000 Minimum 24,000 Average 24,000		30	aniiale
	Sample #1 Date, Result	06/24/20	24.000
	Sample #2 Date, Result		
	Sample #3 Date, Result		
	Minimum		24.000
	Maximum		24.000
	Average		24.000

Daily Maximum 10

Daily Minimum

Units

Omer Limits
Parameter
Field pH

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name: 514 National

514 National Processing Corp.

Daily Max Limits

	- Inite	Parity Many 2 1-14	16:1-41	
-	Sillo	Dally Max Limit	Violations	IRC Exceedances
	mg/L	1.3	0	0
	mg/L		0	0
	mg/L	0.88	0	0
L.	mg/L	2.280	0	0
L	mg/L	2.8	0	0
	mg/L	0.80	0	0
	mg/L		0	0
	mg/L		0	0
	mg/L	5.5	0	0
	mg/l	1.03	0	0
	mg/L		0	0
	mg/L	30.0	0	0
	mg/L	0.0002	0	0
	mg/L	134	0	0
	mg/L	31.0	0	0
	mg/L	1.0	0	0
	mg/L	7.000	0	0
	mg/L	0.019	0	0
	mg/L	117	0	0
	mg/L		0	0
				_

Site Specific Limit

**if not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report Industry Name:

8.1 05/05/20 0.0008 0.0008 8.1 05/05/20 0.0346 0.0002 8.2 0.0072 0.0072 0.0072 8.1 0.0072 0.0072 0.0072 8.1 0.0072 0.0072 0.0072 8.1 0.0072 0.0072 0.0072 8.2 0.0022 0.0023 0.0072 8.2 0.0022 0.0023 0.0023 8.2 0.0022 0.0023 0.0023 8.2 0.0023 0.0023 0.1000 0.0020 8.3 0.0020 0.0023 0.1000 0.0020 8.4 0.0020 0.0020 0.1000 0.0020 8.5 0.0020 0.0023 0.0023 8.6 0.0020 0.0023 0.0020 0.1000 0.0020 8.6 0.0020 0.0020 0.0020 0.1000 0.0020 8.7 0.0020 0.0020 0.0020 0.1000 0.0020 8.8 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.9 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 0.0000 8.0 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000 0.00000 8.0 0.0020 0.0020 0.0020 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000		Fie	Field pH	Ā	Arsenic	197	lie Chalmine				
Delication Bit Delication Sample #1 Date, Result	04/02/20		- 1	- 1	Caon		h	Copper		Lead	
Molytoterlum	Sample #2 Date, Result	05/05/00	4	06/20/30	0000	-		04/02/20	0.0058	04/02/20	0.0003
Molypdenum	Sample #3 Date Decut	delantan	5 6	02/00/00	0.0346			05/05/20	0.0094	05/05/20	0.0004
Molybdenum	Minimum Minimum	07/25/00	0.0	02/22/20	0.0072			06/22/20	0.0105	06/22/20	0.0016
Molybdenum			a.o		0.0008				0.0058		0 0003
Molybdenum	Maximum		8.2	1	0.0346				0.0105		0.0018
Molybdenum	Average		6.1		0.0142				0.0086		9000
Molybdenum											0.0000
October Octo		Molyt	denum	z	1 1	Silv	rer		hallium	12	Zinc
05/15/20 0.0020 0.0023 0.0023 0.0023 0.0023 0.00023 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.1000	Sample #1 Date, Result	04/02/20	0.0022	04/02/20	0.0022					0000000	
Delização 0.0018 0.0015 0.0015 0.0015 0.0015 0.00018 0.0015 0.00023 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.0000 0.00000 0.00	Sample #2 Date, Result	05/05/20	0.0020	05/05/20	0.0015					04/02/20	0.0134
Discrete Discrete	Sample #3 Date, Result	06/22/20	0.0018	06/22/20	0.0023					05/05/20	0.0094
Diocozo Dio	Minimum		0.0018		0.0015					06/22/20	0.0241
Ble(Z-ethy)nexy)phthalate	Maximum		0.0022		0.003	ļ					0.0094
Bis(2-ethyllnexyl)phthalate	Average		0.0020		0.0020						0.0241
Bis(2-ethyllhexyl)phthalate Fluoranthene Fluoride Mercury											9610.0
04/02/20 0.0200 0.0200 0.04/02/20 0.1000 04/02/20 0.1000 06/05/20 05/05/20 0.0200 0.0200 0.05/05/20 0.1000 0.5/05/20 0.0100 0.6/05/20 0.0100 0.6/05/20 0.0100 0.6/05/20 0.0100<		Bis(2-ethylh	exyl)phthalate	Fluor	anthene	Fluo	ide		Jaronny		
05/05/20 0.0200 0.05/05/20 0.1000 0.05/05/20 0.0200 0.0200 0.0200 0.0200 0.0200 0.1000 0.05/05/20 0.0200 0.0200 0.0200 0.1000 0.1000 0.1000 0.1000 0.0402/20 0.0500 0.04/02/20 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000	Sample #1 Date, Result	04/02/20	0.0200			04/02/20		r	O O O		Ammonia
06/22/20 0.10000 0.1000 0.1000 0.1000 0.1000 0.10000 0.10000 0.10000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.10	Sample #2 Date, Result	05/05/20	0.0200			05/05/20	0 1000	05/05/20	0.000	04/02/20	0.1000
0.0200	Sample #3 Date, Result	06/22/20	0.1000			06/22/20	0.1000	06/22/20	0000	02/02/00	0.1000
Phosphorus Phenols Chromium Available Cyrous 04/02/20 0.5200 04/02/20 0.0300 04/02/20 05/05/20 0.4300 05/05/20 0.0300 04/02/20 05/05/20 0.4300 05/05/20 0.0300 05/05/20 05/05/20 0.5100 06/22/20 0.0000 06/22/20 0.4300 06/22/20 0.0300 0.0000 06/22/20 0.5200 0.4300 0.03300 0.0000 0.0000 0.5200 0.0300 0.0300 0.0000 0.5200 0.0300 0.0300 0.0000 0.5200 0.0300 0.0300 0.0000 0.5200 0.0300 0.0300 0.0000 0.622/20 0.0300 0.0300 0.0000 0.5200 0.0300 0.0300 0.0000 0.622/20 0.0300 0.0300 0.0000 0.622/20 0.0300 0.0300 0.0000 0.622/20 0.0000 0.0000 0.0000 <	Minimum		0.0200				0 1000		0000	00/22/20	0.1000
Phosphorus Phenols Chromium Available Cyrolion 04/02/20 0.4/02/20 0.0300 04/02/20 0.0300 04/02/20 05/05/20 0.4300 05/05/20 0.0300 05/05/20 0.0000 04/02/20 05/05/20 0.5100 05/05/20 0.0300 05/05/20 0.0000 06/22/20 0.6727/20 0.5200 0.0300 0.0000 0.0000 06/22/20 0.5200 0.4300 0.0300 0.0000 0.0000 06/22/20 0.5200 0.4867 0.0300 0.0000 0.0000 0.0000 Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS Residual Chlorine Biochemical Oxygen Demand 0.04002 55.0000 12.000 05/05/20 55.0000 41.3000 12.000 12.0000 55.0000 55.0000 12.0000 55.0000 55.0000	Maximum		0.1000				0.1000		0.000		0.1000
Phosphorus Phenois Chromium Available Cyrol 04/02/20 0.65200 04/02/20 0.0000 04/02/20 0.0000 04/02/20 05/05/20 0.4300 0.672/20 0.0300 0.0000 0.0000 06/05/20 06/22/20 0.6120 0.0300 0.0300 0.0000 0.0000 0.022/20 0.5200 0.4867 0.0300 0.0300 0.0000 0.0000 0.0000 Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand Chemical Oxygen Demand TDS TDS 12.000 06/02/20 41.3000 55.0000 12.0000 06/22/20 41.3000 55.0000 12.0000 65/05/20 41.3000	Average		0.0467				0.1000		0.0001		0.1000
Phosphorus Phenois Chromium Available Cyrol 04/02/20 0.6200 04/02/20 0.0000 04/02/20 0.0000 04/02/20 05/05/20 0.4300 0.672/20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.002/20 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00.1000</td>											00.1000
04/02/20 0.5200 04/02/20 0.0300 04/02/20 0.0000 04/02/20 05/05/20 0.4300 05/05/20 0.0300 0.0000 0.0000 0.05/05/20 06/22/20 0.4300 0.0300 0.0300 0.0000 0.0000 0.0000 0.5200 0.4867 0.0300 0.0300 0.0000 0.0000 Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand 12.000 0.05/05/20 55.0000 12.000 0.05/05/20 55.0000 0.05/05/20 55.0000 12.000 0.05/05/20 55.0000 0.05/05/20 55.0000 12.000 0.05/05/20 55.0000 0.05/05/20 55.0000 12.000 0.05/05/20 0.05/05/20 0.05/05/20 0.05/05/20 12.000 0.05/05/20 0.05/05/20 0.05/05/20 12.000 0.05/05/20 0.05/05/20 0.05/05/20 12.000 0.05/05/20 0.05/05/20 0.05/05/20 12.0000		Phos	phorus	1	slone	Chron	ıíum	Availa	ble Cvanide	8	2000
05/05/20 0.4300 0.05/05/20 0.0300 0.05/05/20 0.0000 0.05/05/20 0.0000 0.05/05/20 0.0300 0.0300 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	Sample #1 Date, Result	04/02/20	0.5200	04/02/20	0.0300	04/02/20	0.0000	04/02/20	0 0000	00/00/70	Grease
06/22/20 0.5100 06/22/20 0.0300 0.0000 0.0000 0.0000 0.0000 0.022/20 0.0300 0.0300 0.0300 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000	Sample #2 Date, Result	05/05/20	0.4300	05/05/20	0.0300	05/05/20	0.000	05/05/20	00000	05/05/20	0000
0.0300 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	Sample #3 Date, Result	06/22/20	0.5100	06/22/20	0.0300	06/22/20	0.0000	06/22/20	0.0040	0602020	0000
0.6200 0.0300 0.0000	Minimum		0.4300		0.0300		0.0000		0.0020		20000
Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand TDS	Maximum		0.5200		0.0300		0.0000		0.0040		0000
Residual Chlorine Biochemical Oxygen Demand Chemical Oxygen Demand 06/22/20 12.00 04/02/20 55.0000 05/22/20 05/05/20 52.7000 41.3000 12.0000 12.0000 55.0000 55.0000 12.0000 12.0000 55.0000 55.0000	Average		0.4867		0.0300		0.000		0.0027		5.0000
Chemical Oxygen Demand Chemical Oxygen Dem		Residua	Chlorine								
12.0000 12.0000 12.0000	Sample #1 Date, Result				12.00	Chemical Oxy	gen Demand		TDS		TSS
12.0000 12.0000 12.0000	Sample #2 Date, Result				12:00	04/02/20	000000			04/02/20	6.00
12.0000 12.0000 12.0000	Sample #3 Date Poent					05/05/20	52.7000			05/05/20	8.00
12.0000	Minimim					06/22/20	41.3000			06/22/20	22.00
12.0000	Maximum				12,0000		41.3000				9.00
25.000	Average				12,0000		0000.66				22.00
					75.0000		49.6667				12.00
		ne	Sullate								

23.000 23.000 23.000

23.000

06/22/20

Sample #1 Date, Result
Sample #2 Date, Result
Sample #3 Date, Result
Minimum

Maximum Average

Daily Maximum 9

Daily Minimum

Units 먌

Parameter Other Limits

Field pH

ICO Polymers North America, Inc. (IPNA) Industry Name:

Dally Max Limits

TRC Exceedances 0 0 0 0 0 0 0 0 Violations 0 a 0 0 0 0 0 0 0 0 0 0 Ó 0 Daily Max Limit 30 0.88 2.28 0.019 1.31 0.80 5.5 96.0 2.8 134 7.0 33 117 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/l mg/L mg/L mg/L mg/L mg/L mg/L Bis(2-ethylhexyl)phthalate Available Cyanide Residual Chlorine Oil & Grease Molybdenum Fluoranthene Phosphorus Cadmium Parameter Chromium Thallium Arsenic Copper Mercury Ammonia Fluoride Phenols Nickel Silver Lead Zinc

Site Specific Limit

of Violations and # of TRC Violations based upon 2018 adopted Local Limits **If not specified, the unit is in mg/L

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Apr 01, 2020 to Apr 30, 2020

r Division	
Water	
: Waste	ŧ
District:	ng Repor
Sanitary	t Monitori
East Chicago S	Pretreatment

	rield pri	- 1		Arsenic	3	Cadmium		Copper	Le	Lead
Sample #1 Date, Result	04/14/20	6.6	04/14/20	0.0921			04/14/20	0.2410	04/14/20	0.0011
Sample #2 Date, Result	04/29/20	9.4	04/29/20	00690			04/29/20	1 2400	06/06/90	0.00
Sample #3 Date, Result								00171	723120	Lenn.o
Minimum		9.9		0.0921				0.2410		0 0011
Maximum		9.4		0.6900				1.2100		0.001
Average		8.0		0.3911				0.7255		0.0031
	Molybdenum	lenum	Ž	Nickel		Silver		Thallium	ř	
Sample #1 Date, Result	04/14/20	0.0060	04/14/20	0.0134					04/14/20	Zinc 0 6400
Sample #2 Date, Result	04/29/20	0.0238	04/29/20	0.0118					04/20/20	0.000
Sample #3 Date, Result									04,23,20	nace:n
Minimum		0.0060		0.0118						0
Maximum		0.0238		0.0134						0.3300
Average		0.0149		0.0126						0.5980
	Bis(2-ethylhexyl)phthalate	xyl)phthalate	Fluora	Fluoranthene		Fluoride		Mercur	Amania	eico
Sample #1 Date, Result	04/14/20	0 3000			04/14/20	0.3000	04/14/20	0.00010	04/14/20	0.5900
Sample #2 Date, Result	04/29/20	0.0500			04/29/20	0.2000	04/29/20	0.00010	04/29/20	0.5900
Sample #3 Date, Result										
Minimum		0.0500				0.2000		0.00010		0.5900
Maximum		0.3000				0.3000		0.00010		0.5900
Average		0.1750				0.2500		0.00010		0.5900
	Phosphorus	horus	Phe	Phenois		Chromium	Assign	Available Comises	4	
Sample #1 Date, Result	04/14/20	0.2800	1	0.0300	04/14/20	3.3100	04/14/20	0.0020	04/14/20	OII & Grease
Sample #2 Date, Result	04/29/20	0.5000	04/29/20	0.0500	04/29/20	4 2500	04/29/20	0.0020	04/29/20	00.5
Sample #3 Date, Result										3
Minimum		0.2800		0.0300		3,3100		0.0020		5.00
Maximum		0.5000		0.0500		4.2500		0.0020		15.40
Average		. 0.3900		0.0400		3.7800		0.0020		10.20
	Residual Chlorine	Chlorine		Tin Tin	II-PI	In-Plant Cyanide	Ŭ,	SGT.HFM	90	Ohomomehomom
Sample #1 Date, Result										ituene
Sample #2 Date, Result										
Sample #3 Date, Result										
Minimum										
Maximum										
Average			J.							
	Sulfate	ate	L	TDS		TSS	Biochemica	Biochemical Oxygen Demand	Chemical Ox	Chemical Oxygen Demand
Sample #1 Date, Result					04/14/20	9.00			04/14/20	778.00
Sample #2 Date, Result					04/29/20	4.00			04/29/20	2,530,00
Sampre #3 Date, Result										
Minimum						4.00				778.00
Maximum						9.00				2.530.00

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

	Antimony	Cobalt	Titanium	Vanadium	Cartazolo
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					
	o-Cresol	p-Cresol	n-Decane	n-Octadecane	2.4 6-Trichloronhanol
Sample #1 Date, Result					
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:

Lukeshare Railear & Janker Services

Darry Max Limits

		1		,								, -	1	,											,									
TRC Exceedances	-	0	-	0	0	0	0	0	0	4-	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Violations	-	0	-	0	0	0	0	0	0	-	0	0	0	0	0	0	2	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
Daily Max Limit	0.162	0.474	0.5	0.350	2.8	0.80	0.120		2.87	0.215	0.0537	99	0.0002	134	31	96.0	0.746	0.019	36	N.	56	0.34	500	0.2490	0.1920	0.4090	0.0947	0.2180	0.5980	1.9200	0.6980	0.9480	0.5890	0.1550
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/gm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ma/L
Parameter	Arsenic*	Cadmium	Copper	Lead	Molybdenum	Nickel	Silver	Thallium	Zinc*	Bis(2-ethylhexyl)phthalate*	Fluoranthene*	Fluoride	Mercury	Ammonia	Phosphorus	Phenois	Chromium	Available Cyanide	Oil & Grease	Residual Chlorine	SGT-HEM*	Phenanthrene*	In-Plant Cyanide*	Antimony*	Cobalt*	Tin*	Trtanium*	Vanadium*	Carbazole*	o-Cresol*	p-Cresol*	n-Decane*	n-Octadecane*	2,4,6-Trichlorophenol*

Monthly Average Limits*

Parameter	Units	Monthly Average Limit	Average	Violations
Antimony	mg/L	0.2060		
Arsenic	mg/L	0.1040	0.3911	-
Cadmium	mg/L	0.0962		
Chromium	mg/L	0.3230	3.7800	-
Cobalt	mg/L	0.1240		
Copper	mg/L	0.2420	0.7255	-
Lead	mg/L	0.1600	0.0031	0
Mercury	mg/L	0.000739	0.0001	0
Nickel	mg/L	1.4500	0.0126	0
Silver	mg/L	0.0351		
Tin	l/gm	0.1200		
Titanium	mg/L	0.0618		
Vanadium	mg/L	0.0662	:	
Zinc	mg/L	0.6410	0.5980	0
Bis(2-ethylhexyls)phthalate	mg/L	0.1010	0.1750	-
Carbazole	mg/L	0.2760		
o-Cresol	mg/L	0,5610		
p-Cresol	mg/L	0.2050		
n-Decane	mg/L	0.4370		
Finoranthene	mg/l	0.0268		
n-Occtadecane	mg/L	0.3020		
2,4,6-Trichlorophenol	mg/L	0.1060		
In-Plant Cvanide	mg/L	178.0		

Other Limits

	\Box
Violations	0
Daily Maximum	10
Daily Minimum	5
Units	ns
Parameter	Field pH

[&]quot;Site Specific Limit

^{**}If not specified, the unit is in mg/L

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH.

If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued. Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

East Chicago Sauitary District: Waste Water Division Pretreatment Monitoring Report

	-									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rieia pr		- 1	Arsenic		Cadmium		Copper	_	Lead
Sample #1 Date, Result	05/12/20	7.2	05/12/20	0.5700	05/12/20	0.0010	05/12/20	1 9500	05/12/20	0.0024
Sample #2 Date, Result	05/28/20	7.5	05/28/20	0 2940			05/28/20	0.5900	02/28/20	0.0024
Sample #3 Date, Result							24000000	2000 0	02/20/20	0.0487
Minimum		7.2		0.2940		0.0010		0.5900		70000
Maximum		7.5		0.5700		0 0010		7 0000		0.0024
Average		7.4		0.4320		0.0010		1 2700		0.0497
										0.0200
1 N N	Molybdenum	lenum		Nickel		Silver		Thallium		Zinc
Sample #1 Date, Result	05/12/20	0.0187	05/12/20	0.0279					05/12/20	0.2150
Sample #2 Date, Result	05/28/20	0.0054	05/28/20	0.0137					05/28/20	2 6800
Sample #3 Date, Result									27/200	Z.0800
Minimum		0.0054		0.0137						0.2450
Maximum		0.0187		0.0279						0.2130
Average		0.0121		0.0208						1.4475
	Bis(2-ethylhexyl)phthalate	cyliphthalate	Fluora	Fluoranthene		Flinorida				1 1
Sample #1 Date, Result	05/12/20	0.0500			OEHODO	9000	f	mercury		Ammonia
Sample #2 Date, Result	05/28/20	0.1000			05/28/20	0.1000	02/21/50	0.00010	05/12/20	7.9900
Sample #3 Date, Result					03/03/0	0.2000	02/28/20	0.00010	05/28/20	17.0000
Minimum		0.0500				0 1000		0.00040		
Maximum		0.1000				0.2000		0.00010		7.9900
Average		0.0750				0.1500		0.00010		17.0000
										12.4830
	Phosphorus	horus		Phenois		Chromium	Avails	Available Cvanide	≪ IIC	Oil & Greace
Sample #1 Date, Result	05/12/20	0.0900	05/12/20	0.0800		7 0900	05/12/20	0.0098	05/12/20	10.80
Sample #2 Date, Result	02/82/c0	0.1600	05/28/20	0.1500	05/28/20	0.1900	05/28/20	0.0096	05/28/20	39 80
Sample #3 Date, Result		7								
EDEIGIM		0.0900		0.0800		0.1900		9600'0		10.80
Maximum		0.1600		0.1500		7.0900		0.0098		39 RD
Average		0.1250		0.1150		3.6400		0.0097		25.30
	Residual Chlorine	Chlorine		Tin	1d-ul	In-Plant Cvanide		SCT UEW	i	14
Sample #1 Date, Result									ruena ruena	rnenanthrene
Sample #2 Date, Result										
Sample #3 Date, Result										
Minimum										
Maximum							-			
Average										
	Sulfate		F	TDS		TSS	Blochemica	Blochemical Oxygen Demand	Chemical	Chamical Owww.
Sample #1 Date, Result	05/12/20	65.00			05/12/20	20.00	05/12/20	8,340.00	05/12/20	13 200 00
Sample #2 Date, Result					05/28/20	31.00			05/28/20	4 570 00
Sample #3 Date, Result										20.01
MINIMUM		65.00				20.00		8,340.00		4 570 00
Maximum		65.00				31.00		00 040 0		20.00
						200		0.340.00		43 500 00

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report Industry Name:

	A LINE OF THE PARTY OF THE PART	Copair	Titanium	Vanadium	
Sample #1 Date, Result				Aguadum	Carbazole
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					
	o-Cresol	p-Cresol	n-Darana		
Sample #1 Date, Result				II-Ociadecane	2,4,6-Trichlorophenol
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:

Daily Max Limits

Lakeshore Railcar & Tanker Services

TRC Exceedances	2	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0
Violations	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Daily Max Limit	0.162	0.474	0.5	0.350	2.8	0.80	0.120		2.87	0.215	0.0537	93	0.0002	134	31	0.96	0.746	0.019	36	Z	26	0.34	200	0.2490	0.1920	0.4090	0.0947	0.2180	0.5980	1.9200	0.6980	0.9480	0.5890	0.1550
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/gm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ma/L
Parameter	Arsenic*	Cadmium	Copper	Lead	Molybdenum	Nickel	Silver	Thallium	Zinc*	Bis(2-ethylhexyl)phthalate*	Fluoranthene*	Fluoride	Mercury	Ammonia	Phosphorus	Phenols	Chromium	Available Cyanide	Oil & Grease	Residual Chlorine	SGT-HEM*	Phenanthrene*	In-Plant Cyanide*	Antimony*	Cobalt*	Tin*	Titanium*	Vanadium*	Carbazole*	o-Cresol*	p-Cresol*	n-Decane*	n-Octadecane*	2,4,6-Trichlorophenol*

Site Specific Limit

"If not specified, the unit is in mg/L

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH.

If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed. - Indicates an exceedance for the highlighted sample.

Monthly Average Limits*

Parameter	Units	Monthly Average Limit	Average	Violations
Antimony	mg/L	0.2060		
Arsenic	T/6m	0.1040	0.4320	-
Cadmium	mg/L	0.0962	0.0010	0
Chromium	mg/L	0.3230	3.6400	-
Cobalt	mg/L	0.1240		
Copper	mg/L	0.2420	1,2700	-
Lead	mg/L	0.1600	0.0260	0
Mercury	mg/L	0.000739	0.0001	0
Nickel	mg/L	1.4500	0.0208	0
Silver	mg/L	0.0351		
П	l/gm	0.1200		
Titanium	mg/L	0.0618		
Vanadium	mg/L	0.0662		
Zinc	mg/L	0.6410	1.4475	-
is(2-ethylhexyls)phthalate	mg/L	0.1010	0.0750	0
Carbazole	mg/L	0.2760		
o-Cresol	mg/L	0.5610		
p-Cresol	mg/L	0.2050		
n-Decane	mg/L	0.4370		
Fluoranthene	mg/L	0.0268		
n-Occtadecane	mg/L	0.3020		
2,4,6-Trichlorophenol	mg/L	0.1060		
In-Plant Cvanide	mg/L	178.0		

Other Limits

Violations		-	>	
Daily Maximum		5	2	
Daily Minimum		ıc	1	
Units		sn		
Parameter	17-11-11	LIGID DH		

Jun 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Chemical Oxygen Demand 0.3880 8.1700 8.1700 0.0087 0.0087 0.0087 0.3880 0.3880 8.1700 8.1700 0.0500 0.050.0 0.050.0 331.00 331.00 0.0087 0.3880 0.0500 331.00 5.00 5.00 5.00 5.00 Phenanthrene Oil & Grease Ammonia Lead Zinc 06/30/20 06/30/20 06/30/20 06/30/20 06/30/20 06/30/20 **Biochemical Oxygen Demand** 0.00010 0.00010 0.0380 0.0380 0.0380 0.0380 0.00010 5.0000 107.00 0.00010 0.0020 0.0020 0.0020 5.0000 107.00 5.0000 107.00 Available Cyanide Thallium SGT-HEM Mercury Copper 06/30/20 06/30/20 06/30/20 06/30/20 06/30/20 0.3000 0.3000 0.3000 0.3000 0.000.0 0.0000 0.000.0 0.0007 0.0007 0.0007 0.0007 0.000.0 23.00 23.00 23.00 23.00 In-Plant Cyanide Fluoride Chromium Cadmium Lakeshore Railear & Junker Services Silver TSS 06/30/20 06/30/20 06/30/20 06/30/20 0.0500 0.0348 0.0348 0.0098 0.0098 0.0098 0.0500 0.0348 0.0500 0.0300 0.0300 0.0300 0.000.0 0.0050 0.0348 0.0050 Fluoranthene A rsenic **Phenols** Nickel TDS Ē 06/30/20 06/30/20 06/30/20 06/30/20 06/30/20 Bis(2-ethylhexyl)phthalate 210.00 0.0500 0.0500 0.0500 210.00 0.0064 0.0064 0.0064 0.0064 0.2400 0.2400 0.2400 0.2400 210.00 0.0500 7.3 7.3 7.3 7.3 Residual Chlorine Molybdenum Phosphorus Field ph Sulfate Industry Name: 06/30/20 06/30/20 06/30/20 06/30/20 06/30/20 Sample #1 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #3 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #3 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #1 Date, Result Sample #3 Date, Result Sample #2 Date, Result Minimum Minimum Minimum Maximum Maximum Maximum Maximum Maximum Minimum Minimum Minimum Maximum Average Average Average Average Average Average

Industry Name:				Lakeshore Rall	car & Tanker S.	mices				
	Anth	untinony	0	Cobalt		Itanium	3	Vanadium		
Sample #1 Date, Result	06/30/20	0.0010	06/30/20	0,0010	06/30/20	0 0100	06/36/30	0000	Caro	Caroazole
Sample #2 Date, Result							2000	0.000	naisaiza	0.0500
Sample #3 Date, Result										
Minimum		0.0010		0,0010		0000				
Mandani		0,000		01000		0.0100		0.0500		0.0500
MAXIMUM		0.0010		0.0010		0.0100		0.0500		0.0500
Average		0.0010		0.0010		0,0100		0.0500		0.0500

								20000		0000
Average		0.0010		0.0010		0.0100		0.0500		0000
								00000		0.000
	ý	o-Cresol	2-0	n-Cresol		Decemb				
			- 1			הפנסות	1	n-Octadecane	2.4.6-Trichlorophenol	orophenol
Sample #1 Date, Result	06/30/20	0.1000	06/30/20	0.1000	06/30/20	0.0500	06/30/20	0.0500	Octocian	00100
Sample #2 Date, Result								0000	OCHOCACO	0.0500
Cample #2 Date Decorte										
Sample #3 Date, Result				1						
Minimum		0.1000		0.1000		0.0500		0 0500		
Maximim		0.4000	1					0.000		0.0500
Maximalia		DOD 7.		0.1000		0.0500		0.0500		0.0500
Average		0.1000		0.1000		0.0500		0.0500		0000
				5				00000		Onen o

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Lakeshore Railcar & Tunker Services Industry Name Daily Max Limits

TRC Exceedances 0 o Violations 0 0 0 Daily Max Limit 0.0002 0.4090 0.5980 0.6980 0.746 0.2490 0.1920 0.2180 1.9200 0.350 0.120 2.87 0.0537 0.0947 0.9480 0.80 96.0 134 0.34 0.5 2.8 12 8 200 33 ဗ္က mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ₩ mg/L mg/L mg/L mg/L mg/L mg/L mg/L ₩g/L mg/L mg/L mg/L mg/L mg/L Bis(2-ethylhexyl)phthalate* 2,4,6-Trichlorophenol* Residual Chlorine Available Cyanide In-Plant Cyanide* Phenanthrene* n-Octadecane* Fluoranthene* Oil & Grease Molybdenum Parameter Phosphorus Mercury SGT-HEM* Cadmium Chromium Thallium Vanadium* Carbazole* n-Decane* Arsenic* Copper Fluoride Ammonia Antimony* Titanium* o-Cresol* p-Cresol* Nickel Phenols Cobalt* Silver Lead Zinc* TIn*

Monthly Average Limits*

Гагалете	Units	Monthly Average Limit	Average	Violations
Antimony	mg/L	0.2060	0.0010	0
Arsenic	mg/L	0.1040	0.0348	0
Cadmium	mg/L	0.0962	0.0007	0
Chromium	mg/L	0.3230	0.0000	0
Cobalt	mg/L	0.1240	0.0010	0
Copper	mg/L	0.2420	0.0380	0
Lead	mg/L	0.1600	0.0087	0
Mercury	mg/L	0.000739	0.0001	0
Nickel	mg/L	1.4500	0.0098	0
Silver	mg/L	0.0351		
Tin	∥gш	0.1200	0.0050	0
Trtanium	mg/L	0.0618	0.0100	0
Vanadium	mg/L	0.0662	0.0500	0
Zinc	mg/L	0.6410	0.3880	0
3is(2-ethylhexyls)phthalate	mg/L	0.1010	0.0500	0
Carbazole	mg/L	0.2760	0.0500	0
o-Cresol	mg/L	0.5610	0.1000	0
p-Cresol	mg/L	0.2050	0.1000	0
n-Decane	mg/L	0.4370	0.0500	0
Fluoranthene	mg/L	0.0268	0.0500	-
n-Occtadecane	mg/L	0.3020	0.0500	0
2,4,6-Trichlorophenol	mg/L	0.1060	0.0500	0
In-Plant Cyanide	mg/L	178.0		

Other Limits

Violations	0
Daily Maximum	10
Daily Minimum	3
Units	пs
Parameter	Field pH

Sire Specific Limit

"If not specified, the unit is in mg/L

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH.

If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued. Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

	Industry Name	***		Outfall 531 - Praxair, Inc.	raxair, Inc.					
	Field	Field pH	AR	Arsenic	Cadmium	m n		Copper		Lead
Sample #1 Date, Result	04/15/20	7.7000	04/15/20	0.0114	05/02/20	0.0002	04/15/20	0.027	04/15/20	0.0006
Sample #2 Date, Result	05/07/20	7.5000	05/02/20	0.0121	06/08/20	0.0002	05/07/20	0.020		0.0009
Sample #3 Date, Result	06/08/20	7.9000	06/08/20	0.0083		Ĺ	06/08/20	0.029		0.0024
Minimum		7.5		0.0083		0.0002		0.0195		90000
Maximum		7.9		0.0121		0.0002		0.0293		0.0024
Average		7.7		0.0106		0.0002		0.0253		0.0013
	Molyb	Molybdenum	Z	ickel	Silver	ı.		Thallium	Z	Zinc
Sample #1 Date, Result	04/15/20	0.0118	04/15/20	0.0174					04/15/20	0.0168
Sample #2 Date, Result	05/07/20	0.0094	05/07/20	0.0057					05/07/20	0.0168
Sample #3 Date, Result	06/08/20	0.0107	06/08/20	0.0107					06/08/20	0.0263
Minimum		0.0094		0.0057					Į.	0.0168
Maximum		0.0118		0.0174						0.0263
Average		0.0106		0.0113						0.0200
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluor	anthene	Fluoride (lhe/dav)	he/dav)		Morellar		
Sample #1 Date, Result	04/15/20	0.0800			04/15/20	0.577	04/15/20	0 0001	04/45/20	4 5300
Sample #2 Date, Result	05/07/20	0.0100			06/08/20	0.156	05/07/20	0.0001	02/07/20	1 4600
Sample #3 Date, Result	06/08/20	0.0200					06/08/20	0.0001	06/08/20	2 7200
Minimum		0.0100				0.1564		0.0001		1 4600
Maximum		0.0800				0.5772		0.0001		2.7200
Average		0.0367				0.3668		0.0001		1.9033
										Q.
	Phos	Phosphorus	- 1	Phenois	Chromium		Avail	Available Cyanide	S IIO	Oil & Grease
Sample #1 Date, Result	04/15/20	1.7500	04/15/20	0.0300	04/15/20	0.000.0	05/07/20	0.0025	04/15/20	5.0000
Sample #2 Date, Result	05/07/20	1.2600	05/07/20	0.0300	05/07/20	0.000.0	06/08/20	0.0020	05/07/20	5.0000
Sample #3 Date, Result			06/08/20	0.0300	08/08/20	0.0000				
Minimum		1.2600		0.0300		0.000.0		0.0020		5.0000
Maximum		1.7500		0.0300		0.0000		0.0025		5.0000
Average		1.5050		0.0300		0.000.0		0.0023		5.0000

		-							
	Residual Chlorine	rine	Biochemical C	Biochemical Oxygen Demand	Chemical Oxygen Demand	len Demand	TDS	28T	9
Cam-1- 44 Date Date 14			40,000						•
Sample #1 Date, Result	_		02//0/C0	11.00	04/15/20	51.5000		04/15/20	004
Committee Date Date in			20,000,00						9
Sample #2 Date, Result			02/20/00	11.00	05/07/20	41.3000		05/07/20	7.00
Committee 429 Date Describ									
Sample #3 Date, Result					06/08/20	43.6000		06/08/20	11 00
0.67-2		-					1		20.1
				11.0000		41.3000	1		0.01
Maximum				0000		1			
Шауша				0000.11		51.5000			11 00
Average				11 0000		16 4007			•
				1.0000		45.4007			00.9

Sample #1 Date, Result 05/07/20 320.000 Sample #2 Date, Result 06/08/20 300.000 Sample #3 Date, Result 300.000 Minimum 320.000 Average 310.000		Su	Sulfate
06/08/20	Sample #1 Date, Result	05/01/20	320.000
	Sample #2 Date, Result	06/08/20	300.000
	Sample #3 Date, Result		7
	Minimum		300.000
	Maximum		320.000
	Average		310.000

Daily Maximum 5

Daily Minimum

Units ⊒S

Parameter Other Limits

Field pH

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:

Ourfall 531 - Praxair, Inc.

Daily Max Limits

TRC Exceedances Violations 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Daily Max Limit 0.0002 0.88 2.28 1.03 0.019 0.80 96.0 1.31 7.0 134 2.8 30 33 117 mg/L lbs/day ∏/gш mg/L mg/L шg/L mg/L mg/L mg/L mg/L mg/l mg/L mg/l mg/L mg/L Bis(2-ethylhexyl)phthalate Available Cyanide Fluoranthene Oil & Grease Molybdenum Phosphorus Parameter Cadmium Chromium Arsenic Mercury Copper Phenols Nickel Thallium Fluoride* Ammonia Silver Lead Zinc

mg/L Residual Chlorine

[&]quot;If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:

16.3000 0.0012 0.0006 16.3000 0.0006 0.0012 0.0009 0.0315 1.5200 3.8600 5.0000 5.0000 0.0304 0.0304 7.1000 1.5200 7,1000 5.0000 0.0008 0.0357 0.0357 0.0325 2.9600 17.00 12.00 17.00 12.00 17.00 15.33 8.7667 Oil & Grease Ammonia Zinc Lead TSS 06/08/20 06/08/20 05/07/20 06/08/20 04/15/20 05/07/20 05/07/20 04/15/20 05/07/20 04/15/20 06/08/20 04/15/20 06/08/20 04/15/20 05/07/20 0.0020 0.0083 0.0065 0.0059 0.0059 0.0083 0.0069 0.0001 0.0001 0.0001 0.0023 0.0020 0.0023 0.0001 0.0001 0.0020 0.0021 Available Cyanide Thallium Mercury Copper SOL 06/08/20 05/07/20 05/07/20 04/15/20 06/08/20 05/07/20 06/08/20 04/15/20 04/15/20 Chemical Oxygen Demand 0.0002 0.0002 0.0002 0.6000 0.5000 0.3000 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000 86.00 0.0002 45.90 0.0002 0.3000 0.4667 0.0000 86.00 45.90 45.90 59.27 Chromium Cadmium Fluoride Silver 05/07/20 05/07/20 05/07/20 06/08/20 05/07/20 06/08/20 04/15/20 04/15/20 04/15/20 06/08/20 Outfall 541 - Praxair, Inc. **Biochemical Oxygen Demand** 0.0129 0.0129 0.0026 0.0024 0.0029 0.0300 0,000 0.000.0 0.0000 0.0100 0.0074 0.0061 0.0061 1.00 0.0037 11.00 11.00 11.00 11.00 Fluoranthene Phenols Arsenic Nickel 06/08/20 06/08/20 04/15/20 05/07/20 05/07/20 06/08/20 04/15/20 05/07/20 06/08/20 05/07/20 04/15/20 Bis(2-ethylhexyl)phthalate 04/15/20 0.0500 0.0048 0.000 0.0500 0.0034 0.0048 0.0029 0.0000 0.0500 0.0333 1.3700 0.7000 1.3700 0.9100 0.0037 0.6600 0.0029 0.6600 7.5 7.9 7.5 7.9 7.7 Residual Chlorine Molybdenum Phosphorus Field pH 05/07/20 05/07/20 06/08/20 05/07/20 04/15/20 06/08/20 05/07/20 06/08/20 04/15/20 04/15/20 Sample #1 Date, Result Sample #3 Date, Result Sample #2 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Maximum Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum Minimum Average Average Average Average Average

Sulfate	35.000	40.000		35.000	40.000	37.500
Ø,	05/07/20	06/08/20				
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average

Daily Maximum 우

Daily Minimum

Units าร

Omer Limits Parameter Field pH

Industry Name:

Outfall 541 - Praxair, Inc.

Daily Max Limits

0 0 0 0 0 0 0 0.019 96.0 7.0 117 3 0.0 Daily N mg/L mg/L mg/L mg/L ™g/L mg/L l/gm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L Bis(2-ethylhexyl)phthalate Residual Chlorine Available Cyanide Oil & Grease Fluoranthene Molybdenum Phosphorus Parameter Chromium Cadmium Arsenic Thallium Mercury Ammonia Copper Fluoride Phenols Nickel Lead Silver Zinc

Violations 0 0 0 0	TRC Exceedances 0 0 0
	0
	0 0
	0 0
	00

*Site Specific Limit

[&]quot;If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifo Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

	STATE OF THE PERSON NAMED IN			CHIMICALL STREETS COUNTY THE THE CAN	CEROL MINISTER TO	GFDOT CAN				
	Fiel	Field pH		Arsenic	Cadmium	mn		Copper		Lead
Sample #1 Date, Result	04/22/20	7.7	04/22/20	0.0008	05/28/20	0.0002	04/22/20	0.0113	04/22/20	0 0005
Sample #2 Date, Result	05/26/20	7.8	05/26/20	0.0146			06/36/30	0.0278	0426720	00000
Sample #3 Date, Result	06/22/20	8.0	06/22/20	0.0009			06/22/20	0.0036	06/22/20	0.0003
Minimum		7.7		0.0008		0 0000		90000		0.0002
Maximum		8.0		0.0146		0 0000	2	0.0030		0.0002
Average		7.8		0,0054	ļ	20000		0.0278		0.0005
								71.0.0		0.0004
	Molyb	Molybdenum	Z	ickel	Silver	er		Thallium		Zinc
Sample #1 Date, Result	04/22/20	0.0020	04/22/20	0.0028					OCICCIPO	2000
Sample #2 Date, Result	05/26/20	0.0122	05/26/20	0.0060					05/26/20	0.0202
Sample #3 Date, Result	06/22/20	0.0013	06/22/20	0.0018					06/22/20	0.000
Minimum		0.0013		0.0018						0.0052
Maximum		0.0122		0.0060						0.002
Average		0.0052		0.0036						0.0204
	Bis(2-ethylhe	Bis(2-ethylhexyllohthalate	, cili	Fluoranthone		4				1 [
Sample #1 Date Recuit	04/22/20	0.000			riug.	- 1	40000	Mercury		Ammonia
Cample #2 Date Descrit	05/25/50	0.0200			U4/22/2U	0.1000	04/22/20	0.0001	04/22/20	0.7200
Sample #2 Date, Result	02/92/c0	0.0200			05/26/20	0.1000	05/26/20	0.0001	05/26/20	1.0300
Sample #3 Date, Result	UDIZZIZU	0.0200			06/22/20	0.1000	06/22/20	0.0001	06/22/20	0.1800
Minimum		0.0200				0.1000		0.0001		0.1800
Maximum		0.0200				0.1000		0.0001		1.0300
Average		0.0200				0.1000		0.0001		0.6433
	i									
	Phos	Phosphorus	- 1	Phenois	Chromium	inm	Ava	Available Cyanide	Oii &	Oil & Grease
Sample #1 Date, Result	04/22/20	0.8000	04/22/20	0.0300	04/22/20	0.0000	04/22/20	0.0025	04/22/20	5.0000
Sample #2 Date, Result	05/26/20	1.2800	05/26/20	0.0300	05/26/20	0.000	05/26/20	0.0020	05/26/20	5.0000
Sample #3 Date, Result	06/22/20	0.6200	06/22/20	0.0300	08/22/20	0.0000	06/22/20	0.0020	06/22/20	5.0000
Minimum		0.6200		0.0300		0.0000		0.0020		5.0000
Maximum		1.2800		0.0300		0.000		0.0025		5.0000
Average		0.9000		0.0300		0.0000		0.0022		5 0000
	Residual	Residual Chlorine	ca	Oxygen Demand	Chemical Oxygen Demand	gen Demand		TDS	F	TSS
Sample #1 Date, Result			05/26/20	17.00	04/22/20	46.90			04/22/20	4.00
Sample #2 Date, Result					05/26/20	68.70			05/26/20	28,00
Sample #3 Date, Result					06/22/20	93.70			06/22/20	000
Minimum				17.00		46.90				200
Maximum				17.00		93.70				200
Average				17.00		22.69				20.00
										2

on a man	27.000			27.000	27.000	27.000	
30	05/26/20						
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average	

Violations

Daily Maximum 6

Daily Minimum

Units ns.

Field pH

Other Limits Parameter

Pretreatment Monitoring Report

Industry Name:

Outfall 611 - Arcelor Wittal - Harbor East

Dairy Max Limits

Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	0	0
Cadmium	mg/L		0	0
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	08.0	0	0
Silver	mg/L		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	mg/L	30	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenois	mg/L	96.0	0	0
Chromium	mg/L	7.0	0	0
Available Cyanide	mg/L	0.019	Q	0
Oil & Grease	mg/L	117	0	0
Residual Chlorine	mg/L		0	0

Site Specific Limit

^{**}If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report Industry Name:

								2000	1	Lead
Sample #1 Date, Result	04/21/20	7.9	04/21/20	0.0033			04/21/20	0.0212	04/21/20	0.0008
Sample #2 Date, Result	06/03/20	8.3	06/03/20	0.0052			06/03/20	0.0074	06/03/20	0.0008
Sample #3 Date, Result										
Minimum		6.7		0.0033				0.0074		0.0008
Maximum		8.3		0.0052				0.0212		0.0008
Average		8.1		0.0042	1			0.0143		0.0008
	ayiom	Motybdenum		Nickel	Silver	jr.		Thallium	Z	Zinc
Sample #1 Date, Result	04/21/20	0.0027	04/21/20	0.0049					04/21/20	0.0366
Sample #2 Date, Result	06/03/20	0.0036	06/03/20	0.0030					06/03/20	0.0321
Sample #3 Date, Result				38						
Minimum		0.0027		0.0030						0.0321
Maximum		0.0036		0.0049						0.0366
Average		0.0031		0.0040						0.0344
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluor	Fluoranthene	Fluorida	4		Morenny		
Sample #1 Date, Result	04/21/20	0.0200			04/21/20	0.2000	04/21/20	0.0001	04/21/20	Ammonia 2 7900
Sample #2 Date, Result	06/03/20	0.0500			06/03/20	0.4000	06/03/20	0.0001	06/03/20	3 7200
Sample #3 Date, Result										200
Minimum		0.0200				0.2000		0.0001		2.7900
Maximum		0.0500				0.4000		0.0001		3,7200
Average		0.0350				0.3000		0.0001		3.2550
	Phost	Phosphorus	Ād	Spore	Chromium	E	Anoth	old o		
Sample #1 Date Result	04/21/20	0 9200	04/21/20	0.0300	04124120	0000	Od both	Available cyanide	S	Oll & Grease
Sample #2 Date Recuit	06/03/20	1 7300	06/03/20	0.000	04/2/1/20	0.0000	04/2/1/20	0,0020	04/21/20	2.0000
Sample #3 Date, Result			2	2000	000000	0.0000	DOIDSIZO	0.0020	06/03/20	5.0000
Minimum		0.9200		0.0300		0.0000		0.0020		2 0000
Maximum		1.7300		0.0300		0.0000		00000		00000
Average		1.3250		0.0300		0.0000		0.0020		5.0000
	Culpiago	Decidio Chloring	- 1-		Č					
Sample #1 Date Recult	Negional Inchine		Piociemical	Oxygen Demand	Chemical Oxygen Demand	gen Demand		TDS		TSS
The state of the state of					04/2/1/20	49.20			04/21/20	15.00
Sample #4 Date, Result					06/03/20	43.60			06/03/20	7.00
Sample #3 Date, Result										
Minimum						43.60				7.00
Maximum						49.20				15.00
Average						46.40				11.00

200				P			
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minlmum	Maximum	Average	

Violations 0

Daily Maximum

Daily Minimum

Units

Other Limits
Parameter

Field pH

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:

Outfall 804 - Arcerlormittal in Harbor East

Dairy Max Limits

Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	0	0
Cadmium	mg/L		0	0
	mg/L	0.88	0	0
	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
	mg/L	0.80	0	0
	mg/L		0	0
	mg/L		0	0
	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	T/Bm	30	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenois	mg/L	0.96	0	0
Chromium	mg/L	7.0	0	0
Available Cyanide	mg/L	0.019	0	0
Oil & Grease	mg/L	117	0	0
Residual Chlorine	mg/L		0	0

*Site Specific Limit

**If not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

	Industry Name:		-	Judfall 805 - Arc	eloemittal in It	tal in Harbor East				
	Field	Field pH	Ans	Ansenic	Cadmium	E I		Copper	Fe	Lead
Sample #1 Date, Result	04/21/20	7.5	04/21/20	0.0056	05/18/20	0.0002	04/21/20	0.0024	04/21/20	0.0004
Sample #2 Date, Result	05/18/20	7.7	05/18/20	0.0184			05/18/20	0.0194	05/18/20	0.0012
Sample #3 Date, Result	06/03/20	7.7	06/03/20	0.0073			06/03/20	0.0052	06/03/20	0.0006
Minimum		7.5		0.0056		0.0002		0.0024		0.0004
Maximum		7.7		0.0184		0.0002		0.0194	VI.	0.0012
Average		7.6		0.0104		0.0002		0.0090		0.0007

	Molybo	Molybdenum	Ź	Nickel	Silver	Thallium	Z	Zinc
Sample #1 Date, Result	04/21/20	0.0139	04/21/20	0.0053			04/21/20	0.0054
Sample #2 Date, Result	05/18/20	0.0101	05/18/20	0.0035			05/18/20	0.0258
Sample #3 Date, Result	02/20/90	0.0158	06/03/20	0.0029			06/03/20	0.0303
Minimum		0.0101		0.0029				0,0054
Maximum		0.0158		0.0053				0.0303
Average		0.0133		0.0039				0.0205

	Bis(2-ethylhexyl)phthalate	cyl)phthalate	Fluoranthene	d	Fluoride	<u>a</u>		Mercury	Ammonia	onia
Sample #1 Date, Result	04/21/20	0.0200			04/21/20	1.4000	04/21/20	0.0001	04/21/20	4.7500
Sample #2 Date, Result	05/18/20	0.0200			05/18/20	1.4000	05/18/20	0.0001	05/18/20	2.8800
Sample #3 Date, Result	06/03/20	0.0200			06/03/20	1.8000	06/03/20	0.0001	06/03/20	3.6400
Minimum		0.0200				1.4000		0.0001		2,8800
Maximum		0.0200				1.8000		0.0001		4.7500
Average		0.0200				1.5333		0.0001		3.7567

	Phosphorus	horus	P.	Phenois	Chromium	ium	Avai	Available Cyanide	Oil & Grease	Grease
Sample #1 Date, Result	04/21/20	0.1900	04/21/20	0.0300	04/21/20	0.0000	04/21/20	0.0020	04/21/20	5.0000
Sample #2 Date, Result	05/18/20	0.1300	05/18/20	0.0300	05/18/20	0.0000	05/18/20	0.0020	05/18/20	5.0000
Sample #3 Date, Result	06/03/20	0.1400	06/04/20	0.0500	06/03/20	0.0000	06/03/20	0.0020	06/03/20	5.0000
Minimum		0.1300		0.0300		0.0000		0.0020		5.0000
Maximum		0.1900		0.0500		0.0000		0.0020		5.0000
Average		0.1533		0.0367		0.0000		0.0020		5.0000

	Residual Chlorine	Biochemical C	Biochemical Oxygen Demand	Chemical Oxygen Demand	en Demand	TDS	<u> </u>	TSS
Sample #1 Date, Result		05/18/20	<12.00	04/21/20	30.80		04/21/20	3.00
Sample #2 Date, Result				05/18/20	32.20		05/18/20	5.00
Sample #3 Date, Result				06/03/20	29.90		06/03/20	4.00
Minimum					29.90			3.00
Maximum					32.20			5.00
Average					30.97			4.00

Sulfate	05/18/20 64.000			64.000	64.000	64.000
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average

Violations

Daily Maximum 10

Daily Minimum

Units

Other Limits Parameter

Field pH

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Industry Name:

Ourfall 805 - Arcelormittal in Harbor East

Daily Max Limits

Can't max canta				
Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	0	o
Cadmium	mg/L		0	0
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	0.80	0	0
Silver	mg/L		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	mg/L	30	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenois	mg/L	96'0	0	0
Chromium	mg/L	7.0	0	0
Available Cyanide	mg/L	0.019	0	0
Oil & Grease	mg/L	117	٥	0
Residual Chlorine	mg/L		0	0

Site Specific Limit

**!f not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

	Industry Name:	ä		Safety Kleen Systems	stems					
	Fiel	Field pH	AR	Arsenic		Cadmium		Copper		Lead
Sample #1 Date, Result	04/13/20	7.5	04/13/20	0.0098			04/13/20	0.0133	D4713/20	0 00254
Sample #2 Date, Result	04/28/20	7.5	04/28/20	0.0126			04/28/20	0.074	04/28/20	0.00334
Sample #3 Date, Result										11000
Minimum		7.5		0.0098				0.0133		0.0035
Maximum	ì	7.5		0.0126				0.0244		0.0047
Average		7.5		0.0112				0.0189		0.0041
	Molyb	Molybdenum		Nickel		Silver		Thallium	Z	Zinc
Sample #1 Date, Result	04/13/20	0.11500	04/13/20	0.02130					04/13/20	0.3330
Sample #2 Date, Result	04/28/20	0.07740	04/28/20	0.02590					04/28/20	0 2940
Sample #3 Date, Result										
Minimum		0.0774		0.0213						0.2940
Maximum		0.1150		0.0259						0.3330
Average		0.0962		0.0236						0.3135
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluor	Fluoranthene		Fluoride		Mercury	Amn	Ammonia
Sample #1 Date, Result	04/13/20	0.1000			04/13/20	2.60	04/13/20	0 00045	04/13/20	90 00
Sample #2 Date, Result	04/28/20	0.0500			04/28/20	3.00	04/28/20	0 00075	04/28/20	71.00
Sample #3 Date, Result										
Minimum		0.0500				2.6000		0.0005		00000
Maximum		0.1000				3.0000		0.0008		71.0000
Average		0.0750				2.8000		0.0006		65,5000
	Phosp	Phosphorus	g	Phenols		Chromium	Ave	Available Oranida		
Sample #1 Date, Result	04/13/20	1.5100	04/13/20	0.1100	04/13/20	0 0200	04/13/20	02200	044970	Oli de Girdae
Sample #2 Date, Result	04/28/20	2.2200	04/28/20	0.1000	04/28/20	0.0300	04/28/20	0.0830	04/28/20	18 3000
Sample #3 Date, Result									07/07/0	10.2000
Minimum		1.5100		0.1000		0.0200		0.0770		18 2000
Maximum	ľ	2.2200		0.1100		0.0300		0.0830		22.2000
Average		1.8650		0.1050		0.0250		0.0800		20.2000
	Residual	Residual Chlorine		<u>I</u>		Sulfate	Biochomi	Biochomical Owner Canada		
Sample #1 Date, Result								al Cyfell Dellialia	Cilemical Ca	Cilemical Oxygen Demand
Sample #2 Date, Result									04/13/20	1,320.00
Sample #3 Date, Result									07/07/10	00.000
Minimum										1 320 00
Maximum					H				,,,	1 870 00
Average										1,595.00
	F	TDS		TSS	_					
Sample #1 Date, Result			04/13/20	882.00						
Sample #2 Date, Result			04/28/20	1,120.00						
Sample #3 Date, Result										
Minimum				882.00						
Maximum				1,120.00						
Average				1,001.00						

Apr 01, 2020 to Apr 30, 2020

		THE RESIDENCE OF THE PROPERTY			
Sample #1 Date, Result	Antimony	Cobalt	Titanium	Vanadium	Carbazole
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					
	o-Cresol	p-Cresol	n-Decane	n-Octadesna	2.4 C. Trichloroda
Sample #1 Date, Result					Z, Z, C, LICINGIO DI EIRO
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum					
Maximum					
Average					

Safety Kleen Systems Industry Name:

Daily Max Limits					W	Moni
Parameter	Units	Daily Max Limit	Violations	TRC Exceedances	L	
Arsenic*	mg/L	1.310	0	0	J.,	
Cadmium	mg/L		0	0		l
Copper	mg/L	0.88	0	0		
Lead*	mg/L	2.280	0	0		
Molybdenum	mg/L	2.8	0	0		
Nickel	mg/L	0.80	0	0		
Silver	mg/L		0	0		
Thallium	mg/L		0	0		
Zinc*	mg/L	5.50	0	0		
Bis(2-ethylhexyl)phthalate*	mg/l	1.030	0	0		
Fluoranthene*	mg/L	0.787	0	0	<u> </u>	
Fluoride	mg/L	30.0	0	0		
Mercury	mg/L	0.0002	2	0	1	
Ammonia	mg/L	134	0	0	1	
Phosphorus	mg/L	31.0	0	0	<u> 25</u>	Bis(2
Phenols	mg/L	1.0	0	0		1
Chromium	mg/L	7.000	0	0		
Available Cyanide	mg/L	0.019	2	2		
Oil & Grease	mg/L	117	0	0	1	
Residual Chlorine	mg/L		0	0	<u> </u>	
Antimony*	mg/L	0.2490	0	0		
Cobalt*	mg/L	0.1920	0	0	l.	12
Tin*	mg/L	0.4090	0	0	J	
Titanium*	mg/L	0.0947	0	0	ŏ	Othe
Vanadium*	mg/L	0.2180	0	0		
Carbazole*	mg/L	0.3920	0	0	<u>i </u>	
o-Cresol*	mg/L	1.9200	0	0]	
p-Cresol*	mg/L	0.6980	0	0		
n-Decane*	mg/L	5.7900	0	0		
n-Octadecane*	mg/L	1.2200	0	0		
2,4,6-Trichlorophenol*	mg/L	0.1550	0	0		

onthly Average Limits*

Parameter	Units	Monthly Average Limit	Average	Violations
Antimony	mg/L	0.2080	,	
Arsenic	mg/L	0.1040	0.0112	0
Cadmium	mg/L	0.0962		
Chromium	mg/L	0.4870	0.0250	0
Cobalt	mg/L	0.1240		
Copper	mg/L	0.3010	0.0189	0
Lead	mg/L	0.1720	0.0041	0
Mercury	mg/L	0.000739	0.000000	0
Nickel	mg/L	1.4500	0.0236	0
Silver	mg/L	0.0351		
Tin	l/gm	0.1200		
Titanium	mg/L	0.0618		
Vanadium	T/6m	0.0662		
Zinc	mg/L	0.6410	0.3135	0
Bis(2-ethylhexyl)phthalate	mg/L	0.1580	0.0750	0
Carbazole	mg/L	0.2230		
o-Cresol	mg/L	0.5610		
p-Cresol	mg/L	0.2050		
n-Decane	mg/L	3.3100		
Fluoranthene	mg/L	0.3930		
n-Octadecane	mg/L	0.9250		
2,4,6-Trichlorophenol	mg/L	0.1060		

her Limits

Violations	0	
Daily Maximum	10	
Daily Minimum	5	
Units	ns	
Parameter	Field pH	

Site Specific Limit

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

- Indicates an exceedance for the highlighted sample.

^{**}If not specified, the unit is in mg/L.

	menony rank			Safery Micent Systems	Stems					
	Fiel	Field pH	A	Arsenic	Ü	Cadmium		Copper	Le	Lead
Sample #1 Date, Result	05/06/20	9.5	05/06/20	0.0084			05/06/20	0.0076	05/06/20	0 00100
Sample #2 Date, Result	05/21/20	7.2	05/21/20	0.0080			05/21/20	0.0083	05/21/20	0.00103
Sample #3 Date, Result			05/25/20	0.0057			05/29/20	0.0106	271700	241 00.0
Minimum		7.2		0.0057				0.0076		0 0044
Maximum		9.5		0.0084				9,000		0.0011
Average		8.4		0.0074				0.0088		0.0013
	Also Carlo	de misse			-					
Cample #4 Date Bearit	MONING	Molypaenum	- 1	Nickel		Silver		Thallium	iZ	Zinc
Sample #1 Date, Result	05/00/20	0.03200	05/06/20	0.02890					05/06/20	0.1180
Sample #2 Date, Result	05/17/20	0.03590	05/21/20	0.01090					05/21/20	0.1170
Sample #3 Date, Result	05/29/20	0.03830	05/29/20	0.01620					05/29/20	0.1690
Minimum		0.0320		0.0109						0.1170
Maximum		0.0383		0.0289						0.1690
Average		0.0354		0.0187						0.1347
	Bis(2-ethylhe	Bis(2-ethylhexyl)ohthalate	Fluor	Fluoranthene		Elipsido				
Sample #1 Date, Result	05/06/20	0.1000			05/06/20	2 40	05/06/20	mercury	Ammonia	
Sample #2 Date, Result	05/21/20	0.1000			05/21/20	130	02/00/20	0 00000	05/06/20	26.90
Sample #3 Date, Result	05/29/20	00000			05/20/20	3.40	02/12/00	0.00018	05/21/20	47.50
Minimum		0.0000			02/23/20	1 3000		00000	05/28/20	55.00
Maximum		0.100				24000	1	0.0002		47.5000
Average		0.0667				4 8000		0.0008		56.9000
						0000:1		0.0005		53,1333
	Phosp	Phosphorus	Ph	Phenois	סֿ	Chromium	Avai	Available Cvanide	Oil & C	Oil & Greace
Sample #1 Date, Result	05/06/20	0.7500	05/06/20	0.0600	05/06/20	0.0100	05/06/20	0.0950	05/06/20	10 4000
Sample #2 Date, Result	05/21/20	0.7800	05/21/20	0.0500	05/21/20	0.0100	05/21/20	0 3000	05/21/20	6 1000
Sample #3 Date, Result	05/29/20	1.2000	05/29/20	0.0400	05/29/20	0.0100			05/29/20	6 4000
Minimum		0.7500		0.0400		0.0100		0.0950		6.1000
Махітит		1.2000		0.0600		0.0100		0.3000		10.4000
Average		0.9100		0.0500		0.0100		0.1975		7.6333
	Residual	Residual Chlorine		Į.		Sulfate	Ricehooling	Riochemies Owner Damen		
Sample #1 Date, Result			05/29/20	00'0					OS/08/20	Chemical Oxygen Demand
Sample #2 Date, Result									05/21/20	575 00
Sample #3 Date, Result										0000
Minimum				0.0000						575 00
Maximum				0.0000					111	503.00
Average				0.0000						584.00
	1	TDS		TSS						
Sample #1 Date, Result			05/06/20	188.00						
Sample #2 Date, Result			05/21/20	253.00						
Sample #3 Date, Result										
mamuum.			20.0	188.00						
Maximum				253.00						
Average				220.50						

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Minimum	Cobalt	Tranium	Vanadium	Carbazole 05/29/20	
Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Minimum				05/29/20	0.0000
mple #2 Date, Result mple #3 Date, Result Minimum					
mple #3 Date, Result Minimum					
Minimum					
					000
Maximum					0.000
Average					0.0000
o-Cresol	p-Cresol	n-Decane	n-Octadecane	2.4 & Trichlound	
Sample #1 Date, Result				A,40,1110	obueno
Sample #2 Date, Result					
Sample #3 Date, Result					
Minimum			30		
Maximum					
Average					

Industry Name:

Safety RIcen Systems

Daily Max Limits

																															-,	
	TRC Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	o	0	0	0	0	0	0	0	0	0	0	0	o
	Violations	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	Daily Max Limit	1.310		0.88	2.280	2.8	0.80			5.50	1.030	0.787	30.0	0.0002	132	31.0	1.0	7.000	0.019	117		0.2490	0.1920	0.4090	0.0947	0.2180	0.3920	1.9200	0.6980	5.7900	1.2200	0.1550
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/gm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/l.	mg/L	mg/L	mg/L
any max cimits	Parameter	Arsenic*	Cadmium	Copper	Lead*	Molybdenum	Nickel	Silver	Thallium	Zinc*	Bis(2-ethylhexyl)phthalate*	Fluoranthene*	Finoride	Mercury	Ammonia	Phosphorus	Phenois	Chromium	Available Cyanide	Oil & Grease	Residual Chlorine	Antimony*	Cobalt*	Tin*	Titanium*	Vanadium*	Carbazole*	o-Cresol*	p-Cresol*	n-Decane*	n-Octadecane*	2,4,6-Trichlorophenol*

Monthly Average Limits"

Parameter Antimony	4	Monthly Average I imit	A.c. man	
Antimony	9	וווין אבומאב ביייין	Average	Violations
	mg/L	0.2060		
Arsenic	mg/L	0.1040	0.0074	0
Cadmium	mg/L	0.0962		
Chromium	mg/L	0.4870	0.0100	0
Cobalt	mg/L	0.1240		
Copper	mg/L	0.3010	0.0088	0
Lead	mg/L	0.1720	0.0013	0
Mercury	mg/L	0.000739	0.000490	0
Nickel	mg/L	1.4500	0.0187	0
Silver	mg/L	0.0351		
Tin	l/gm	0.1200	0.0000	0
Titanium	mg/L	0.0618		
Vanadium	mg/L	0.0662		
Zinc	mg/L	0.6410	0.1347	0
Bis(2-ethylhexyl)phthalate	mg/L	0.1580	0.0667	0
Carbazole	mg/L	0.2230	0.0000	0
o-Cresol	mg/L	0.5610		
p-Cresol	mg/L	0.2050		
n-Decane	mg/L	3.3100		
Fluoranthene	mg/L	0.3930		
n-Octadecane	mg/L	0.9250		
2,4,6-Trichlorophenal	mg/L	0.1060		

Other Limits

Farameter	Units	Daily Minimum	Daily Maximum	Violations
Field pH	ns	5	10	0

"Site Specific Limit

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

- Indicates an exceedance for the highlighted sample.

[&]quot;If not specified, the unit is in mg/L.

Jun 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division

Pretreatment Monitoring Report

	Field ph			Arsenic	5	Cadmium		Copper	Fe	Lead
Sample #1 Date, Result	06/11/20	7.4	06/11/20	0.0103			06/11/20	0.0144	06/11/20	0.00209
Sample #2 Date, Result	06/29/20	7.2	06/29/20	0.0137			06/29/20	0.0113	06/29/20	0.00213
Sample #3 Date, Result										
Minimum	=	7.2		0.0103				0.0113		0.0021
Maximum		7.4		0.0137				0.0144		0.0021
Average		7.3	3-1	0.0120				0.0129		0.0021
	Molyb	Molybdenum	Ž	Nickel		Silver		Thallium	Z	Zinc
Sample #1 Date, Result	06/11/20	0.03240	06/11/20	0.01710					06/11/20	0.1430
Sample #2 Date, Result	06/29/20	0.05320	06/29/20	0.01950					06/29/20	0.1980
Sample #3 Date, Result										
Minimum		0.0324		0.0171						0.1430
Maximum		0.0532		0.0195						0.1980
Average		0.0428		0.0183						0.1705
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluori	Fluoranthene		Fluoride		Mercury	Ammonia	onia
Sample #1 Date, Result	06/11/20	0.1000	06/29/20	0.100	06/11/20	1.80	06/11/20	0.00016	06/11/20	49 GO
Sample #2 Date, Result	06/29/20	0.1000		<u> </u>	06/29/20	2.30	06/29/20	0.00027	06/29/20	72.70
Sample #3 Date, Result										
Minimum		0.1000		0.1000		1.8000		0.0002		49,6000
Maximum	, mai	0.1000		0.1000		2.3000		0.0003		72.7000
Average		0.1000		0.1000		2.0500		0.0002		61.1500
	Phosp	Phosphorus	Ph	Phenois	ס	Chromium	Avail	Available Cvanide	8 110	Oil & Gresse
Sample #1 Date, Result	06/11/20	1.1500	1		06/11/20	0.0100	06/11/20	0 4500	06/11/20	6.6000
Sample #2 Date, Result	06/29/20	1.0600	06/29/20	0.0600	06/29/20	0.0200	06/29/20	0 2700	06/29/20	7.6000
Sample #3 Date, Result		T.								
Minimum		1.0600		0.0500		0.0100		0.2700		6.6000
Maximum		1.1500		0.0600		0.0200		0.4500		7.6000
Average		1.1050		0.0550		0.0150		0.3600		7.1000
	Residual	Residual Chlorine		Tin		Sulfate	Biochemic	Biochemical Oxygen Demand	Chemical Oxygen Demand	voen Demand
Sample #1 Date, Result			06/29/20	0.01					06/11/20	200.00
Sample #2 Date, Result									06/29/20	937.00
Sample #3 Date, Result										
Minimum				0.0050						500.00
Maximum			III.	0.0050						937.00
Average				0.0050						718.50
	F	TDS		TSS						
Sample #1 Date, Result					_					
Sample #2 Date, Result			06/29/20	277.00						
Sample #3 Date, Result					ī					
Minimum				156.00						
Maximum				277.00						
A										

Report
_
_
=
<u> 2</u>
43
~
\mathbf{r}
- bf
7
_
•=
-
=
toring
=
oni
=
abla
+
P
- 57
9
=
-
6
24
بو
rea
-
4.0
=
_

			and the same of the first	100000					
	Antimony	ŭ	Cobalt)= 	Tramum		Vanadium	- Free	Cortingolo
Sample #1 Date, Result		06/29/20	0.0020					00,00,00	
Sample #2 Date, Result								02/23/20	0001.0
Sample #3 Date, Result									
Minimum			0.0020						0.4000
Maximum			0.0020						0.1000
Average			0.0020						0.1000
	o-Cresol	2	p-Cresol	ė	n-Decane	1	n-Octadecane	246-Trich	2 4.6-Trichlorophanol
Sample #1 Date, Result				06/29/20	0.1000	06/29/20	0 1000	201-201-201-201-201-201-201-201-201-201-	
Sample #2 Date, Result									
Sample #3 Date, Result									
Minimum					0.1000		0 1000		
Maximum					0.1000		0 1000		
Average					0.1000		0 1000		

Industry Name:

Safety, Kleen Systems

Daily Max Limits

TRC Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Violations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	a	2	a	0	0	0	0	0	0	0	0	0	0	0	0
Daily Max Limit	1.310		0.88	2.280	2.8	08.0			5.50	1.030	0.787	30.0	0.0002	134	31.0	1.0	7.000	0.019	117		0.2490	0.1920	0.4090	0.0947	0.2180	0.3920	1.9200	0.6980	5.7900	1.2200	0.1550
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/6m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ma/L
Parameter	Arsenic*	Cadmium	Copper	Lead*	Molybdenum	Nickel	Silver	Thallium	Zinc*	Bis(2-ethylhexyl)phthalate*	Fluoranthene*	Fluoride	Mercury	Ammonia	Phosphorus	Phenois	Chromium	Available Cyanide	Oil & Grease	Residual Chlorine	Antimony*	Cobalt*	Tin*	Trtanium*	Vanadium*	Carbazole*	o-Cresol*	p-Cresol*	n-Decane*	n-Octadecane*	2,4.6-Trichlorophenol*

Monthly Average Limits"

Parameter	Units	Monthly Average Limit	Average	Violations
Antimony	mg/L	0.2060		
Arsenic	mg/L	0.1040	0.0120	0
Cadmium	mg/L	0.0962		
Chromium	mg/L	0.4870	0.0150	0
Cobalt	mg/L	0.1240	0.0020	0
Copper	mg/L	0.3010	0.0129	0
Lead	mg/L	0.1720	0.0021	0
Mercury	mg/L	0.000739	0.000215	0
Nickel	mg/L	1.4500	0.0183	0
Silver	mg/L	0.0351		
Tin	l/gm	0.1200	0.0050	0
Titanium	mg/L	0.0618		
Vanadium	mg/L	0.0662		
Zinc	mg/L	0.6410	0.1705	0
Bis(2-ethylhexyl)phthalate	mg/L	0.1580	0.1000	0
Carbazole	mg/L	0.2230	0.1000	0
o-Cresol	mg/L	0.5610		
p-Cresol	mg/L	0.2050		
n-Decane	mg/L	3.3100	0.1000	0
Fluoranthene	mg/L	0.3930	0.1000	0
n-Octadecane	mg/L	0.9250	0.1000	0
2,4,6-Trichlorophenol	mg/L	0.1060		

Other Limits

Violations	0	
Daily Maximum	10	
Daily Minimum	5	
Units	ns	
Parameter	Field pH	

"Site Specific Limit

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

- Indicates an exceedance for the highlighted sample.

^{**}If not specified, the unit is in mg/L

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

Sample #1 Date, Result Cadmium Copper Lead Sample #2 Date, Result 04/16/20 7.4 04/16/20 0.0018 06/09/20 0.0002 04/16/20 0.0002 04/16/20 0.0002 Sample #2 Date, Result 06/09/20 7.6 0.5/27/20 0.0050 0.0050 0.0074 0.0074 0.0002 0.0004 Minimum 7.4 0.009/20 0.0018 0.0002 0.0002 0.0011 0.0074 0.0002 Maximum 7.5 0.0034 0.0050 0.0002 0.0002 0.0111 0.0003 Average 7.5 0.0034 0.0002 0.0002 0.0003 0.0003		industry Name.		2	Ourfall VS4 - Ar.	celorantal in b	arbor Hest				
04/16/20 7.4 04/16/20 0.0018 06/09/20 0.0002 04/16/20 0.0081 0.4/16/20 05/27/20 7.8 05/27/20 0.0050 0.0050 0.0074 0.6/27/20 06/09/20 7.8 06/09/20 0.0033 0.0002 0.0111 06/09/20 7.4 0.0018 0.0002 0.0074 0.0074 0.0074 7.5 0.0050 0.0002 0.0011 0.0011 7.5 0.0034 0.0002 0.0003		Field	Hd -	Ars	enic	Cadmit	en en		Copper		ead
05/27/20 7.8 05/27/20 0.0050 0.0050 0.0050 0.0074 0.6727/20 06/09/20 7.8 06/09/20 0.0033 0.0002 0.0111 0.0074 0.0074 7.4 0.0050 0.0060 0.0002 0.0111 0.0074 0.0111 7.5 0.0034 0.0002 0.0011 0.0089 0.0089	Sample #1 Date, Result	04/16/20	7.4	04/16/20	0.0018	06/09/20	0.0002	04/16/20	0.0081		
D6/09/20 7.8 06/09/20 0.0033 0.0002 0.011 D6/09/20 7.4 0.0018 0.0002 0.0074 0.0111 7.6 0.0050 0.0002 0.0111 7.5 0.0034 0.0032 0.0089	Sample #2 Date, Result	05/27/20	7.6	05/27/20	0.0050			05/27/20	0.0074	05/27/20	0.0002
7.4 0.0018 0.0002 0.0074 7.6 0.0050 0.0011 7.5 0.0034 0.0002 0.0089	Sample #3 Date, Result	06/09/20	7.6	06/09/20	0.0033			06/09/20	0.0111	08/09/20	0.0004
7.6 0.0050 0.0002 0.0111 7.5 0.0034 0.0002 0.0089	Minimum		7.4		0.0018		0.0002		0.0074		0.0002
7.5 0.0034 0.0002 0.0089	Maximum		7.6		0.0050		0.0002		0.0111		0.0004
	Average		7.5		0.0034		0.0002		0.0089		0.0003

	Molyb	Molybdenum	Z	Nickel	Silver	Thallium	Zi	Zinc
Sample #1 Date, Result	04/16/20	0.0029	04/16/20	6900.0				1
Sample #2 Date, Result	05/27/20	0.0047	05/27/20	0.0042			05/27/20	0.0106
Sample #3 Date, Result	08/09/20	0.0045	06/09/20	0.0036			06/09/20	0.0176
Minimum		0.0029		0.0036				0.0081
Maximum		0.0047		0.0069				0.0176
Average		0.0040		0.0049				0.0121

	Bis(2-ethylhe	3is(2-ethylhexyl)phthalate	Fluoranthene	Fluoride	ide		Mercury	Amn	Ammonia
Sample #1 Date, Result	04/16/20	0.1200		04/16/20	0.4000	04/16/20	0.0001	04/16/20	3.2300
Sample #2 Date, Result	05/27/20	0.0200		05/27/20	0.6000	05/27/20	0.0001	05/27/20	2.3100
Sample #3 Date, Result	06/09/20	0.0200		06/09/20	0.5000	06/09/20	0.0001	06/09/20	8.1200
Minimum		0.0200			0.4000		0.0001		2.3100
Maximum		0.1200			0.6000		0.0001		8.1200
Average		0.0533			0.5000		0.0001		4.5533

		Τ		T	T	Ī	7
Oil & Grease	5.0000	2.0000	5.0000	5.0000	5.0000	5.0000	
O II & C	04/16/20	05/27/20	05/09/20				
Available Cyanide	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	
Availa	04/16/20	05/27/20	06/03/20				
ium	0.0000	0.0000	0.000	0.000	0.0000	0.0000	
Chromium	04/16/20	05/27/20	06/09/20				
henois	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	
Phe	04/16/20	05/27/20	06/09/20				
horus	0.7300	0.4500	0.9900	0.4500	0.9900	0.7233	
Phosphorus	04/16/20	05/27/20	06/09/20				
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average	

	Residual Chlorine	Віоснетіса	Biochemical Oxygen Demand	Chemical Oxygen Demand	gen Demand	TDS	TSS	S
Sample #1 Date, Result		06/09/20	11.00	04/16/20	44.60		04/16/20	3.00
Sample #2 Date, Result				05/27/20	50.40		05/27/20	4.00
Sample #3 Date, Result				06/09/20	70.90		06/09/20	12.00
Minimum			11.00		44.60			3.00
Maximum			11.00		70.90			12.00
Average			11.00		55.30			6.33

Sulfate	180,000					
Ś	06/09/20					
	Sample #1 Date, Result	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average

Violations 0

Daily Maximum 9

Daily Minimum S

Units ns

Industry Name:

Outfall 934 - Arcelormittal in Harbor West

Daily Max Limits

ily Max Limits				
Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	T/6w	1.31	0	0
Cadmium	mg/L		0	0
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	0.80	0	0
Silver	T/6m		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	mg/L	30	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenols	mg/L	96.0	0	0
Chromium	mg/L	0.7	0	0
Available Cyanide	∏⁄gш	0.019	0	0
Oil & Grease	mg/L	117	0	0
Residual Chlorine	mg/L		0	0

*Site Specific Limit

[&]quot;If not specified, the unit is in mg/L.

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. if the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specific Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

									The same of the sa	
	Field pH	1 pH	Ars	Arsenic	Cadmium	ium		Copper	Ľ	Lead
Sample #1 Date, Result	04/22/20	7.3	04/22/20	0.0054			04/22/20	0.0049	04/22/20	0.0006
Sample #2 Date, Result	05/27/20	7.3	05/27/20	0.0057			05/27/20	0.0034	05/27/20	90000
Sample #3 Date, Result	06/25/20	7.3	06/25/20	0.0052			06/25/20	0.0027	06/36/30	2000
Minimum		7.3		0.0052				0.007	Constant	0.000
Maximum		7.3		2000.0				0.0021		0.0003
Wilder of the state of the stat		5 6		0.0007				0.0049		0.0006
ARGIGAN	e de	2		0.0034				0.0037		0.0004
	Molybdenum	denum	Ĭ	lickel	Silver	-	ľ	Thallium	Zinc	2
Sample #1 Date, Result	04/22/20	0.0029	04/22/20	0.0045					04/22/20	0.0520
Sample #2 Date, Result	05/27/20	0.0030	05/27/20	0.0022					05/27/20	0.0088
Sample #3 Date, Result	06/25/20	0.0034	06/25/20	0.0038					ORIDEIDO	2000
Minimum		0 0028		0.0022	0.				02/02/00	0.0083
Maximum		0.0020		0.0025						0.0083
Average		0.0031		0.0035						0.0520
	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluors	Fluoranthene	Fluoride	ide		Mercury	Ammonia	onia
Sample #1 Date, Result	04/22/20	20.0000			04/22/20	0.6000	04/22/20	0.0001	04/22/20	1.4500
Sample #2 Date, Result	05/27/20	0.0500			05/27/20	0.8000	05/27/20	0.0001	05/27/20	0.8200
Sample #3 Date, Result	06/25/20	0.0500		1	06/25/20	0.6000	06/25/20	0.0001	06/25/20	1,2700
Minimum		0.0500				0.6000		0.0001		0.8200
Maximum		20.0000				0.8000		0.0001		1.4500
Average		6.7000				0.6667		0.0001		1.1800
	Phosp	Phosphorus	Phe	Phenois	Chromium	ium	Avail	Available Cyanide	Oil & (Oil & Grease
Sample #1 Date, Result	04/22/20	0.4500	04/22/20	0.0300	04/22/20	0.000	04/22/20	0.0020	04/22/20	5.0000
Sample #2 Date, Result	05/27/20	0.3200	05/27/20	0.0300	05/27/20	0.0000	05/27/20	0.0027	05/27/20	5.0000
Sample #3 Date, Result	06/25/20	0.4100	06/25/20	0.0300	06/25/20	0.0000	06/25/20	0.0037	06/25/20	5.0000
Minimum		0.3200	[" -	0.0300		0.0000		0.0020		5.0000
Maximum		0.4500		0.0300		0.0000		0.0037	415	5.0000
Average		0.3933		0.0300		0.0000		0.0028		5.0000
	Residual	Residual Chlorine	Biochemical C	Oxygen Demand	Chemical Oxvoen Demand	nen Demand		TDS	ř	Tee
Sample #1 Date, Result					04/22/20	21.60			OCICCIAN	2
Sample #2 Date, Result					05/27/20	25.40			05/27/20	8 2
Sample #3 Date, Result					06/25/20	16.20			06/25/20	8 00 4
Minimum						16.20	4			4 00
Maximum						25.40				2007
Average						21.07				00.9
	Sul	Sulfate								
Sample #1 Date, Result										
Sample #2 Date, Result										
Sample #3 Date, Result										
Minimum			,							
Maximum										
Average										

Violations 0

Daily Maximum 10

Daily Minimum 5

Units

Other Limits
Parameter
Field pH

Pretreatment Monitoring Report

Industry Name:

Outfall 935 - Arcelormittal in Harbor West

Daily Max Limits

	1				1	T		1		1		1	1							
TRC Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Violations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0
Daily Max Limit	1.31		0.88	2.28	2.8	0.80			5.5	1.03		30	0.0002	134	31	96'0	7.0	0.019	117	
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/6m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Parameter	Arsenic	Cadmium	Copper	Lead	Molybdenum	Nickel	Silver	Thallium	Zinc	Bis(2-ethylhexyl)phthalate	Fluoranthene	Fluoride	Mercury	Ammonia	Phosphorus	Phenols	Chromium	Available Cyanide	Oil & Grease	Residual Chlorine

"Site Specific Limit

[&]quot;If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

⁻ Indicates an exceedance for the highlighted sample.

East Chicago Sanitary District: Waste Water Division

Pretreatment Monitoring Report

Apr 01, 2020 to Jun 30, 2020

Oil & Grease Ammonia Zinc Lead TSS Available Cyanide Mercury Thallium Copper TDS Chemical Oxygen Demand Chromium Cadmium Fluoride Silver United States Steel Corporation **Biochemical Oxygen Demand** Fluoranthene Arsenic Phenols Nickel Bis(2-ethylhexyl)phthalate Residual Chlorine Molybdenum Phosphorus Field pH Sulfate Industry Name: Sample #2 Date, Result Sample #2 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #1 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #3 Date, Result Maximum Average Maximum Maximum Maximum Average Average Minimum Maximum Minimum Minimum Minimum Minimum Maximum Minimum Average Average Average

Violations 0

Daily Maximum

Daily Minimum 5

Units

Other Limits Parameter

Field pH

Pretreatment Monitoring Report

Industry Name:

t Kingnan A

United States Steel Corporation

Daily Max Limits

			•	
Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	0	0
Cadmium	mg/L		0	0
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	0.80	0	0
Silver	mg/L		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	mg/L	30	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenols	mg/L	0.96	0	0
Chromium	mg/L	7.0	0	0
Available Cyanide	mg/L	0.019	0	0
Oil & Grease	mg/L	117	0	0
Residual Chlorine	mg/L		0	0

*Site Specific Limit

**If not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifo Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

- Indicates an exceedance for the highlighted sample.

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

0.0006 0.0005 0.0006 0.0078 0.0172 0.0078 5.0000 5.0000 0.0002 0.0004 0.0172 0.0110 1.7300 2.1100 0.5500 2.1100 1.4633 5.0000 5.0000 5.0000 0.0081 0.5500 5.0000 16.00 18.00 15.33 12.00 18.00 12.00 Oil & Grease Ammonia Fead Zinc TSS 06/02/20 05/19/20 05/19/20 06/02/20 05/19/20 04/07/20 06/23/20 06/02/20 04/07/20 04/07/20 06/02/20 04/07/20 05/19/20 06/02/20 04/07/20 0.0042 0.0042 0.0065 0.0078 0.0172 0.0078 0.0172 0.0020 0.0020 0.0020 0.0065 0.0087 0.0001 0.0001 0.0001 0.0020 0.0020 0.0087 0.0001 0.0001 0.0001 0.0110 0.0081 Available Cyanide Thallium Mercury Copper TDS 05/19/20 06/02/20 05/19/20 06/02/20 04/07/20 05/19/20 04/07/20 04/07/20 Chemical Oxygen Demand 0.0002 0.0000 0.0002 0.0002 0.0002 3.2126 2.8876 0.000.0 0.000.0 2.6271 0.000 0.000.0 41.20 57.30 36.80 36.80 57.30 45.10 3.2126 2,6271 Fluoride (lbs/day) Chromium Cadmium Silver 04/07/20 04/07/20 06/02/20 05/19/20 06/02/20 06/02/20 Outfull 941 - Praxair, Inc. 04/07/20 05/19/20 **Biochemical Oxygen Demand** 0.0022 0.0032 0.0055 0.0065 0.0065 0.0300 0.0300 0.0300 0.0022 0.0111 0.0047 0.0054 0.0300 0.0300 0.0300 0.0111 0.0047 0.0051 11.00 11.00 11.00 11.00 Fluoranthene Arsenic Phenois Nickel 06/02/20 04/07/20 05/19/20 05/19/20 05/02/20 04/07/20 05/19/20 04/07/20 06/02/20 06/02/20 Bis(2-ethylhexyl)phthalate 120.000 120.000 0.1600 0.0263 0.0456 0.0263 0.0456 0.0342 0.0200 0.0500 0.0500 0.0500 0.0400 0.1600 0.1800 0.1400 120.000 0.0308 0.1400 0.0200 0.1800 8.4 7.9 7.6 7.6 8.0 8.4 Residual Chlorine Molybdenum Phosphorus Field pH Sulfate Industry Name: 05/19/20 06/02/20 04/07/20 06/02/20 05/19/20 06/02/20 04/07/20 04/07/20 05/19/20 06/02/20 05/19/20 04/07/20 Sample #1 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #2 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #3 Date, Result Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Sample #3 Date, Result Sample #3 Date, Result Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum Maximum Minimum Average Minimum Average Average Average Average

Maximum

Average

ı	1	2	1
l	1	=	ı
ŀ	-	į	1
l	3	Š	ı
ı	3	-	I
ŀ	7	ī	ı
ŀ	7	1	ı
l	0	Ę	ı
ŀ	1	ì	ı
ı	11.	1	ł
l	Ĉ	Š	ı
ı			ł
l			ı
			ı
			١
ı			ı
ı			ı
ı			ı
ı			ı
ŀ			ı
ı			ı
			ı
l			ı
l			ı
l			l
			l
			ı
	£		
	31		
1	Z		
	2	١	
	¥		
	É	1	
	-		
		Ц	

Daily Max Limits

	Violations	0
	Daily Maximum	10
	Daily Minimum	9
	Units	ns
	Parameter	Field pH
ľ		

"Site Specific Limit

0

٥

117

mg/L

Oil & Grease Residual Chlorine

^{**}If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

Jun 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division

Pretreatment Monitoring Report

0.0008 0.0005 0.0008 0.0005 Lead 06/02/20 0.0128 0.0087 0.0128 0.0087 Copper 06/02/20 0.0002 0.0002 Cadmium 06/02/20 Outfall 941 - Praxair, Inc. 0.0056 0.0111 0.0084 0.0056 Arsenic 06/23/20 06/02/20 7.3 6.7 7.3 Field pH Industry Name: 06/23/20 Sample #1 Date, Result Sample #2 Date, Result Sample #3 Date, Result Maximum Minimum Average

	Molybdenum	denum	Ź	Nickel	Silver	Thallium	Z	Zinc
Sample #1 Date, Result	06/02/20	0.0456	06/02/20	0.0051		0.0172	1	
Sample #2 Date, Result	06/23/20	0.0365	06/23/20	0.0169		0.0394	06/23/20	0.0394
Sample #3 Date, Result		-03						
Minimum		0.0365	I	0.0051		0.0172		0.0172
Maximum		0.0456		0.0169		0.0394		0.0394
Average		0.0411		0.0110		0.0283		0.0283

	Bis(2-ethylhe	Bis(2-ethylhexyl)phthalate	Fluoranthene	Fluoride (lbs/day)	(bs/day)		Mercury	Amm	Ammonia
Sample #1 Date, Result	06/02/20	0.0500		06/02/20	2.8231	06/02/20	0.0001	06/02/20	2 1100
Sample #2 Date, Result	06/23/20	0.0500		06/23/20	2.3018	06/23/20	0.0001	06/23/20	1 1500
Sample #3 Date, Result									
Minimum		0.0500			2.3018		0 0001		4 4500
Maximum	1410	0.0500			2 8231		0,000		2 4400
Average		0.0500			2,5625		0.0001		1 8300
									2000:1

	Phosp	Phosphorus	Ę	henols	Chromium	- Enj	Avail	Available Cyanide	8 10	Oil & Grease
Sample #1 Date, Result	06/02/20	0.1800	06/02/20	0.0300	06/02/20	0.0000	06/02/20	0.0020	06/02/20	5 0000
Sample #2 Date, Result	06/23/20	0.1700	06/23/20	0.0500	06/23/20	0.0000	06/23/20	0.0056	06/23/20	5,000
Sample #3 Date, Result		11								
Minimum		0.1700		0.0300		0.0000	1	0.0020		5,0000
Maximum		0.1800		0.0500		0.0000		0.0056		5,000
Average		0.1750		0.0400		0.0000		0.0038		5.0000

,	Residual Chlorine	Biochemical (II Oxygen Demand	Chemical Oxyg	en Demand	TDS		TSS
Sample #1 Date, Result		06/02/20	11.00	06/02/20 36.80	36.80			
Sample #2 Date, Result				06/23/20	59.60		06/23/20	28.00
Sample #3 Date, Result								
Minimum			11.00		36.80			97
Maximum			11.00		59 60			00.00
Average			11.00		48.20			20.00
								20.77

,	Sample #1 Date, Result 06/02/20	Sample #2 Date, Result	Sample #3 Date, Result	Minimum	Maximum	Average
Sulrate	120.000			120.000	120.000	120.000

Violations 0

Daily Maximum 10

Daily Minimum

Units

Other Limits
Parameter
Field pH

Industry Name:

Outfull 941 - Praxair, Inc.

Daily Max Limits

TRC Exceedances o 0 0 0 0 0 0 0 0 0 0 Violations 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o Daily Max Limit 30 0.019 0.88 2.28 1.03 96.0 0.80 38 7.0 2.8 1.31 31 lbs/day mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L l/gm mg/L mg/L Bis(2-ethylhexyl)phthalate Available Cyanide Oil & Grease Molybdenum Fluoranthene **Phosphorus** Parameter Cadmium Chromium Arsenic Ammonia Thallium Copper Mercury Phenols Fluoride* Nickel Silver Lead Zinc

*Site Specific Limit

Residual Chlorine

**If not specified, the unit is in mg/L

of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. if the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifc Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

- Indicates an exceedance for the highlighted sample.

Apr 01, 2020 to Jun 30, 2020

East Chicago Sanitary District: Waste Water Division Pretreatment Monitoring Report

	Industry Name:	20		United States G	United States Gypston Company	1.0				
	Fie	Field pH	Ais	Arsenic	Садшіпш	E I		Copper	3	Lead
Sample #1 Date, Result	04/28/20	7.5	04/28/20	0.0027	05/19/20	0.0002	04/28/20	0.0103	04/28/20	0.0016
Sample #2 Date, Result	05/19/20	7.4	05/19/20	0.0028			05/19/20	0.0107	05/18/20	0.0004
Sample #3 Date, Result	05/11/20	1.7	06/11/20	0.0113			06/11/20	0.0082	06/11/20	0.0012
Minimum		7.4		0.0027		0.0002		0.0082		0.0004
Maximum		7.7		0.0113		0.0002		0.0107		0.0016
Average		7.5		0.0056		0.0002		0.0097		0.0011
	Wolyb	Wolybdenum	Ž	Nicke	Silver	di di		Thallium	, Z	Zine
Sample #1 Date, Result	04/28/20	0.0041	04/28/20	0.0109					04/28/20	0.0856
Sample #2 Date, Result	05/19/20	0.0043	05/19/20	0.0066					05/19/20	0.0614
Sample #3 Date, Result	06/11/20	0.0072	06/11/20	0.0075					06/11/20	0.0478
Minimum		0.0041		0.0066						0.0478
Maximum		0.0072		0.0109						0.0856
Average		0.0052		0.0083						0.0649
÷	Bis(2-ethylh	Bis(2-ethylhexyl)phthalate	Fluor	Fluoranthene	Fluoride	ide		Mercury	Amm	Ammonia
Sample #1 Date, Result	04/28/20	0.0500			04/28/20	0.9000	04/28/20	0.0001	04/28/20	21.2000
Sample #2 Date, Result	05/19/20	0.0500			05/19/20	0.9000	05/19/20	0.0001	05/19/20	7.9500
Sample #3 Date, Result	06/11/20	0.0500			06/11/20	1,1000	06/11/20	0.0001	06/11/20	9.2000
Minimum		0.0500				0.9000		0.0001		7.9500
Maximum		0.0500				1.1000		0.0001		21.2000
Average		0.0500				0.9667		0.0001		12.7833
	Phos	Phosphorus	Ą	Phenois	Chromium	iam	Ava	Available Cvanide	S 110	Oil & Greace
Sample #1 Date, Result	04/28/20	3.7200	04/28/20	0.0500	04/28/20	0000'0	04/28/20	0.0185	04/28/20	10,8000
Sample #2 Date, Result	05/19/20	1.9100	05/19/20	0.0300	05/19/20	0.0000	05/19/20	0.0035	05/19/20	6.0000
Sample #3 Date, Result	06/11/20	1.2100	06/11/20	0.0300	06/11/20	0.000	06/11/20	0.0047	06/11/20	5.0000
Minimum		1.2100		0.0300		0.0000		0.0035		5.0000
Maximum		3.7200		0.050.0		0.0000		0.0185	1111	10.8000
Average		2.2800		0.0367		0.0000		0.0089		7.2667
	Residua	Residual Chlorine	Biochemical	Oxygen Demand	Chemical Oxygen Demand	nen Demand		T)S	F	Tee
Sample #1 Date, Result				105.00	04/28/20	794.00			04/28/20	103 00
Sample #2 Date, Result					05/19/20	228.00			05/19/20	43.00
Sample #3 Date, Result					06/11/20	82.30			06/11/20	19.00
Minimum				105.00		82.30				19.00
Maximum				105.00		794.00				103.00
Average				105.00		368.10				55.00
	ng.	Sulfate								
Sample #1 Date, Result	05/19/20	310.000								
Sample #2 Date, Result										
Sample #3 Date, Result										
Minimum		310.000								
Maximum		310.000								
Average		310,000								

Prefreatment Monitoring Report

Industry Name:

United States Gypsum Company

Daily Max Limits

any max comes				
Parameter	Units	Daily Max Limit	Violations	TRC Exceedances
Arsenic	mg/L	1.31	0	0
Cadmium	mg/L		0	o
Copper	mg/L	0.88	0	0
Lead	mg/L	2.28	0	0
Molybdenum	mg/L	2.8	0	0
Nickel	mg/L	0.80	0	0
Silver	mg/L		0	0
Thallium	mg/L		0	0
Zinc	mg/L	5.5	0	0
Bis(2-ethylhexyl)phthalate	l/gm	1.03	0	0
Fluoranthene	mg/L		0	0
Fluoride	mg/L	30	0	0
Mercury	mg/L	0.0002	0	0
Ammonia	mg/L	134	0	0
Phosphorus	mg/L	31	0	0
Phenols	mg/L	96.0	0	0
Chromium	mg/L	7.0	0	0
Available Cyanide	mg/L	0.019	0	0
Oil & Grease	mg/L	117	0	0
Residual Chlorine	T/6m		0	0

Other Limits

Parameter	Units	Daily Minimum	Daily Maximum	Violations
Field pH	ns	S	10	0

*Site Specific Limit

^{**}If not specified, the unit is in mg/L

[#] of Violations and # of TRC Violations based upon 2018 adopted Local Limits

Technical Review Criteria (TRC) Exceedance - An exceedance of the daily max limit multiplied by a predetermined factor. This factor is 1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH. If the number of TRC exceedances in a 6 month period is equal to or greater than 33% of the number of samples for a given pollutant, then a TRC violation is issued.

Site Specifo Limit - A limit that only applies to the given outfall, and is defined by the associated discharge permit. If multiple limits of the same type are shown, the more stringent limit is displayed.

Indicates an exceedance for the highlighted sample.

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

May 01, 2020

James Kornas Lakeshore Railcar Services LLC 1150 East 145th Street East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 521

Dear Mr. Kornas:

On April 14, 2020 District personnel collected a sample of effluent from Outfall No. 521. Based upon the analytical results, the District has determined that the discharge from the above referenced facility was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violation:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.1 of the Sewer User Ordinance (National Categorical Pretreatment Standards).

Local Limit for Chromium is 0.746 mg/L; analytical result reported was 3.31 mg/L

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall subject to additional fines in accordance with Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the total amount of the penalty for the above noted violation is \$1,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

kenneth L. Myer

Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel

File - UTG #521/Enforcement

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

May 14, 2020

James Kornas Lakeshore Railcar Services LLC 1150 East 145th Street East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Ontfall No. 521

Dear Mr. Kornas:

On April 29, 2020 District personnel collected a sample of effluent from Outfall No. 521. Based upon the analytical results, the District has determined that the discharge from the above referenced facility was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violation:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.1 of the Sewer User Ordinance (National Categorical Pretreatment Standards).

- Categorical Limit for Chromium is 0.746 mg/L; analytical result reported was 4.25 mg/L
- Categorical Limit for Arsenic is 0.162 mg/L; analytical result reported was 0.69 mg/L
- o Categorical Limit for Copper is 0.500 mg/L; analytical result reported was 1.21 mg/L

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall subject to additional fines in accordance with Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the total amount of the penalty for the above noted violation is \$3,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Kenneth L. Myers

Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD Dr. Joseph Allegretti, ECSD Counsel

File - UTG #521/Enforcement

521 NOV 05-14-20 (Cr, As, Cu on 04-29-20)

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466

Fax: (219) 391-8254

June 8, 2020

James Kornas Lakeshore Railcar Services LLC 1150 East 145th Street East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 521

Dear Mr. Kornas:

On May 28, 2020 District personnel collected a sample of effluent from Outfall No. 521. Based upon the analytical results, the District has determined that the discharge from the above referenced facility was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violation:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.1 of the Sewer User Ordinance (National Categorical Pretreatment Standards).

- Categorical Limit for Arsenic is 0.162 mg/L; analytical result reported was 0.294 mg/L
- Categorical Limit for Copper is 0.500 mg/L; analytical result reported was 0.59 mg/L
- Categorical Limit for Oil & Grease is 36 mg/L; analytical result reported was 39.8 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall subject to additional fines in accordance with Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the total amount of the penalty for the above noted violation is \$3,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD Dr. Joseph Allegretti, ECSD Counsel File - UTG #521/Enforcement

521 NOV 06-08-20 (As, Cu, FOG on 05-28-20)

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

July 28, 2020

James Kornas Lakeshore Railcar Services LLC 1150 East 145th Street East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 521

Dear Mr. Kornas:

On May 12, 2020 District personnel collected a sample of effluent from Outfall No. 521. Based upon the analytical results, the District has determined that the discharge from the above referenced facility was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violation:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.1 of the Sewer User Ordinance (National Categorical Pretreatment Standards).

- Categorical Limit for Arsenic is 0.162 mg/L; analytical result reported was 0.570 mg/L
- Categorical Limit for Copper is 0.500 mg/L; analytical result reported was 1.950 mg/L
- Categorical Limit for Chromium is 0.746 mg/L; analytical result reported was 7.090 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall subject to additional fines in accordance with Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the total amount of the penalty for the above noted violation is \$3,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Kenneth L. Myers

Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD Dr. Joseph Allegretti, ECSD Counsel

File - UTG #521/Enforcement

521 NOV 07-28-20 (As, Cu, Cr on 05-12-20)

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466

Fax: (219) 391-8254

April 27, 2020

Michael Radcliffe Senior Compliance Manager Safety-Kleen Systems 601 Riley Road East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 901

Dear Mr. Radeliffe:

On April 13, 2020, District personnel collected a sample of effluent from Outfall No. 901. Based upon the analytical results, the District determined that the discharge from the above referenced facility on this date was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violations:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.3 of the Sewer User Ordinance (Local Limits).

- Local Limit for available cyanide is 0.019 mg/L; analytical result reported is 0.077 mg/L.
- Local Limit for Mercury is 0.0002 mg/L; analytical result reported is 0.00045 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall be subject to additional fines in accordance with the Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the penalty for the above noted violation is \$5,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Kenneth L. Myers

Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466

Fax: (219) 391-8254

May 13, 2020

Michael Radcliffe Senior Compliance Manager Safety-Kleen Systems 601 Riley Road East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 901

Dear Mr. Radcliffe:

On April 28, 2020, District personnel collected a sample of effluent from Outfall No. 901. Based upon the analytical results, the District determined that the discharge from the above referenced facility on this date was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violations:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.3 of the Sewer User Ordinance (Local Limits).

- Local Limit for available cyanide is 0.019 mg/L; analytical result reported is 0.083 mg/L.
- Local Limit for Mercury is 0.0002 mg/L; analytical result reported is 0.00075 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall be subject to additional fines in accordance with the Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the penalty for the above noted violation is \$5,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Compliance Manager

Encls.

CC; Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

June 1, 2020

Michael Radcliffe Senior Compliance Manager Safety-Kleen Systems 601 Riley Road East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 901

Dear Mr. Radcliffe:

On May 6, 2020, District personnel collected a sample of effluent from Outfall No. 901. Based upon the analytical results, the District determined that the discharge from the above referenced facility on this date was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violations:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.3 of the Sewer User Ordinance (Local Limits).

- Local Limit for available cyanide is 0.019 mg/L; analytical result reported is 0.095 mg/L.
- Local Limit for Mercury is 0.0002 mg/L; analytical result reported is 0.0008 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall be subject to additional fines in accordance with the Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the penalty for the above noted violation is \$5,000. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Kenneth L. Myers Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

June 1, 2020

Michael Radcliffe Senior Compliance Manager Safety-Kleen Systems 601 Riley Road East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 901

Dear Mr. Radcliffe:

On May 21, 2020, District personnel collected a sample of effluent from Outfall No. 901. Based upon the analytical results, the District determined that the discharge from the above referenced facility on this date was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violations:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.3 of the Sewer User Ordinance (Local Limits).

Local Limit for available cyanide is 0.019 mg/L; analytical result reported is 0.030 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall be subject to additional fines in accordance with the Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the penalty for the above noted violation is \$2,500. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Kenneth L. Wyers Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel File - Safety Kleen #901/Enforcement

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

July 14, 2020

Michael Radcliffe Senior Compliance Manager Safety-Kleen Systems 601 Riley Road East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 901

Dear Mr. Radcliffe:

On June 11, 2020, District personnel collected a sample of effluent from Outfall No. 901. Based upon the analytical results, the District determined that the discharge from the above referenced facility on this date was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violations:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.3 of the Sewer User Ordinance (Local Limits).

Local Limit for available cyanide is 0.019 mg/L; analytical result reported is 0.45 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall be subject to additional fines in accordance with the Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the penalty for the above noted violation is \$2,500. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

H---P---Henry Padilla

Pretreatment Assistant

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel

5201 Indianapolis Boulevard East Chicago, IN 46312 Phone: (219) 391-8466 Fax: (219) 391-8254

July 14, 2020

Michael Radcliffe Senior Compliance Manager Safety-Kleen Systems 601 Riley Road East Chicago, IN 46312

Re: Notice of Violation - Non-Compliance with Discharge Permit Outfall No. 901

Dear Mr. Radcliffe:

On June 29, 2020, District personnel collected a sample of effluent from Outfall No. 901. Based upon the analytical results, the District determined that the discharge from the above referenced facility on this date was in violation of its Industrial Wastewater Discharge Permit. Specifically, the analytical data indicates the following violations:

Per Part B, the Permittee shall at no time discharge wastewater containing pollutants in excess of any of the following specific pollutant limitations as established by Article 13.13.3.02.3 of the Sewer User Ordinance (Local Limits).

Local Limit for available cyanide is 0.019 mg/L; analytical result reported is 0.27 mg/L.

Within 15 business days of receipt of this letter, you must provide a written explanation for the cause of the violation as well as a corrective action plan to ensure compliance in the future. Failure to submit the required report within the specified time shall be subject to additional fines in accordance with the Ordinance.

In accordance with Article 13.13.7.01 of the Sewer User Ordinance, the penalty for the above noted violation is \$2,500. Kindly remit payment to the District within 30 calendar days upon receipt of this letter.

Should you have any questions concerning this notice, please contact Henry Padilla at 391-8466 ext. 232 or email at hpadilla@eastchicago.com.

Sincerely,

Henry Padilla

Pretreatment Assistant

Kenneth L. Myers Compliance Manager

Encls.

CC: Dr. Abderrahman Zehraoui, Director of Utilities, ECSD

Dr. Joseph Allegretti, ECSD Counsel File - Safety Kleen #901/Enforcement